On the Power and Limitations of Random Features for Understanding Neural Networks

Gilad Yehudai

Ohad Shamir

NeurIPSi November 2019

<u>Gilad Yehudai</u> Ohad Shamir On the Power and Limitations of Random Features 1/14

Theory of Deep Learning

Why neural networks are so successful?

Random Features

The Main Question

Can Random Features help us understand neural networks?

Previous Works

- Learning polynomials with neural networks, Andoni et al. (2014)
- SGD learns the conjugate kernel class of the network, Daniely (2017)
- Gradient descent finds global minima of deep neural networks, Du et al. (2018)
- Gradient descent provably optimizes over-parameterized neural networks, Du et al. (2018)
- Random ReLU features: Universality, approximation, and composition, Sun et al. (2018)
- Learning and generalization in overparameterized neural networks, going beyond two layers, Allen-Zhu et al. (2018)

Previous Works

- Neural tangent kernel: Convergence and generalization in neural networks, Jacot et al. (2018)
- Learning overparameterized neural networks via stochastic gradient descent on structured data, Li et al. (2018)
- A generalization theory of gradient descent for learning over-parameterized deep ReLU networks, Cao et al. (2019)
- Can SGD learn recurrent neural networks with provable generalization? Allen-Zhu et al. (2019)

Random Features

Random Features Model

- $\mathcal{F} \subseteq \{f : \mathbb{R}^d \to \mathbb{R}\}$ a family of functions
- $\bullet \ \mathcal{D}$ a distribution over \mathcal{F}
- \bullet Random features: linear predictor over functions from ${\cal F}$

$$f(\mathbf{x}) = \sum_{i=1}^{r} u_i f_i(\mathbf{x})$$

Random Features

Random Features Model

- $\mathcal{F} \subseteq \{f: \mathbb{R}^d \to \mathbb{R}\}$ a family of functions
- $\bullet \ \mathcal{D}$ a distribution over \mathcal{F}
- Random features: linear predictor over functions from ${\cal F}$

$$f(\mathbf{x}) = \sum_{i=1}^{r} u_i f_i(\mathbf{x})$$

Examples

• Two-layer neural network with fixed first-layer weights:

$$\sum_{i=1}^r u_i \sigma(\langle \mathbf{w}_i, \mathbf{x} \rangle)$$

 Any random or deterministic kernel, including neural tangent kernel (NTK)

Gilad Yehudai Ohad Shamir On the Power and Limitations of Random Features 6/14

Our Contribution

- Power of random features:
 - Neural networks can learn as well as polynomial predictors, as long as there are enough neurons (proof use random features)

Our Contribution

- Power of random features:
 - Neural networks can learn as well as polynomial predictors, as long as there are enough neurons (proof use random features)

- Limitations of Random features
 - The random features model cannot even efficiently approximate a single ReLU neuron

Theorem (Neural networks learn polynomials)

Given any data distribution \mathcal{D} on \mathbb{R}^d , running SGD on a two-layer neural network with r neurons w.h.p will have better generalization capabilities over data from \mathcal{D} than any polynomial predictor with degree at most k and coefficients at most α , as long as:

$$r > poly\left(lpha, d^k
ight)$$

Theorem (Neural networks learn polynomials)

Given any data distribution \mathcal{D} on \mathbb{R}^d , running SGD on a two-layer neural network with r neurons w.h.p will have better generalization capabilities over data from \mathcal{D} than any polynomial predictor with degree at most k and coefficients at most α , as long as:

$$r > poly\left(lpha, d^k
ight)$$

Remark - Neurons lower bound

We can lower bound r by the number of polynomials, $r > \Omega(d^k)$

Reduction to random features

Let $u_i^{(t)}$, $\mathbf{w}_i^{(t)}$ be the weights of $N(\mathbf{x})$ at iteration t.

Take an appropriate learning rate and number of iterations (depend on r):

$$N^{(t)}(\mathbf{x}) = \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(t)}, \mathbf{x} \right\rangle\right) \approx \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(0)}, \mathbf{x} \right\rangle\right)$$

Reduction to random features

Let $u_i^{(t)}$, $\mathbf{w}_i^{(t)}$ be the weights of $N(\mathbf{x})$ at iteration t.

Take an appropriate learning rate and number of iterations (depend on r):

$$N^{(t)}(\mathbf{x}) = \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(t)}, \mathbf{x} \right\rangle\right) \approx \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(0)}, \mathbf{x} \right\rangle\right)$$

Learning Polynomials - Proof Intuition

Reduction to random features

Let
$$u_i^{(t)}$$
, $\mathbf{w}_i^{(t)}$ be the weights of $N(\mathbf{x})$ at iteration t.

Take an appropriate learning rate and number of iterations (depend on r):

$$N^{(t)}(\mathbf{x}) = \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(t)}, \mathbf{x} \right\rangle\right) \approx \sum_{i=1}^{r} u_i^{(t)} \sigma\left(\left\langle \mathbf{w}_i^{(0)}, \mathbf{x} \right\rangle\right)$$

Convex optimization over random features

$$\sum_{i=1}^{r} u_{i}^{(t)} \sigma\left(\left\langle \mathbf{w}_{i}^{(0)}, \mathbf{x} \right\rangle\right)$$

Gilad Yehudai Ohad Shamir On the Power and Limitations of Random Features 9/14

Is This All There is About Neural Networks?

Is This All There is About Neural Networks?

Limitations of Random Features

Setting

(1)
$$\mathbf{x} \sim \mathcal{N}(0, I_d)$$

(2) $y = [\langle \mathbf{w}^*, \mathbf{x} \rangle + b^*]_+$ where $[\cdot]_+$ denote ReLU

Limitations of Random Features

Setting

(1)
$$\mathbf{x} \sim \mathcal{N}(0, I_d)$$

(2) $y = [\langle \mathbf{w}^*, \mathbf{x} \rangle + b^*]_+$ where $[\cdot]_+$ denote ReLU

Theorem (General random features)

For every distribution \mathcal{D} of functions from \mathcal{F} there exist $\mathbf{w}^* \in \mathbb{R}^d, \ b^* \in \mathbb{R}$ such that w.h.p over sampling of $f_1, \ldots f_r$ if:

$$\mathbb{E}_{\mathbf{x}\sim\mathcal{N}(\mathbf{0},l)}\left[\left(\sum_{i=1}^{r}u_{i}f_{i}(\mathbf{x})-[\langle\mathbf{w}^{*},\mathbf{x}\rangle+b^{*}]_{+}\right)^{2}\right]\leq\frac{1}{50}$$

then:

$$r \cdot \max_i |u_i| \ge \Omega(2^d)$$

Limitations of Random Features - Corollary

Theorem (Symmetric random features)

If the random features have a symmetric structure, then the previous theorem applies for any w^*

Limitations of Random Features - Corollary

Theorem (Symmetric random features)

If the random features have a symmetric structure, then the previous theorem applies for any \mathbf{w}^*

Corollary

Using the random features model, it is not possible to explain how two-layer neural networks can learn a single ReLU neuron.

Limitations of Random Features - Corollary

Theorem (Symmetric random features)

If the random features have a symmetric structure, then the previous theorem applies for any \mathbf{w}^*

Corollary

Using the random features model, it is not possible to explain how two-layer neural networks can learn a single ReLU neuron.

Learning a single neuron

The following optimization problem:

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, l)} \left[\left([\langle \mathbf{w}, \mathbf{x} \rangle]_{+} - [\langle \mathbf{w}^{*}, \mathbf{x} \rangle]_{+} \right)^{2} \right]$$

where \mathbf{w} is optimized, i.e. learning a single neuron with a single neuron, is tractable with gradient based methods (e.g. Soltanolkotabi (2017))

(Short) Proof Intuition

Learning ReLU with ReLU

- Our random features are $f_i(\mathbf{x}) = [\langle \mathbf{w}_i, \mathbf{x} \rangle]_+$ for random \mathbf{w}_i
- Our target neuron is $[\langle \mathbf{w}^*, \mathbf{x} \rangle]_+$

(Short) Proof Intuition

Learning ReLU with ReLU

- Our random features are $f_i(\mathbf{x}) = [\langle \mathbf{w}_i, \mathbf{x} \rangle]_+$ for random \mathbf{w}_i
- Our target neuron is $[\langle \mathbf{w}^*, \mathbf{x} \rangle]_+$
- By picking w_i spherically at random, they are almost orthogonal to w* (concentration of measure)

(Short) Proof Intuition

Learning ReLU with ReLU

- Our random features are $f_i(\mathbf{x}) = [\langle \mathbf{w}_i, \mathbf{x} \rangle]_+$ for random \mathbf{w}_i
- Our target neuron is $[\langle \mathbf{w}^*, \mathbf{x} \rangle]_+$
- By picking w_i spherically at random, they are almost orthogonal to w* (concentration of measure)
- Will need many w_i in order to have high correlation with the direction w^{*}

- Random features are very limited in explaining neural networks
 - In particular, they cannot even explain learnability of a single ReLU neuron (which is quite learnable)

- Random features are very limited in explaining neural networks
 - In particular, they cannot even explain learnability of a single ReLU neuron (which is quite learnable)
- Random features do not capture representation learning, which seem to be a significant part of neural networks

- Random features are very limited in explaining neural networks
 - In particular, they cannot even explain learnability of a single ReLU neuron (which is quite learnable)
- Random features do not capture representation learning, which seem to be a significant part of neural networks
- There are still many open question (despite all the positive results) as to why neural networks successfully learn with gradient based methods

- Random features are very limited in explaining neural networks
 - In particular, they cannot even explain learnability of a single ReLU neuron (which is quite learnable)
- Random features do not capture representation learning, which seem to be a significant part of neural networks
- There are still many open question (despite all the positive results) as to why neural networks successfully learn with gradient based methods

Thank You!

gilad.yehudai@weizmann.ac.il