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Graph Neural Network

Graph Neural Network

I A deep learning architecture that operate on graphs structure
I Every node in the graph is a neural network
I The connection between nodes obtained from the graph

adjacency matrix:
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Hyper Network

Hypernetwork

I A neural architecture that has adaptive capabilities
I A network f is trained to predict the weights θg of another network
g:
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Error Correcting Codes

Error Correcting Codes

I Techniques to deliver reliable
digital data over unreliable
communication channels

I Linear block code:
I A (n, k) block code, n > k
I Block - block in, block out
I Linear - addition of two

codeword is a codeword
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Error Correcting Codes

Error Correcting Codes

I Parity check matrix H(n−k)×n - each row is a linear relations that
the components of a codeword must satisfy

I For example - (n, k) = (7, 4):

I c is codeword if and only if - c1×nHT
n×(n−k) = 0

I Can be used to:
I Decide whether a particular vector is a codeword
I Decode in decoding algorithm
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Belief Propagation Algorithm

Belief Propagation Algorithm

I Algorithm for decoding linear block codes
I Subclass of message passing algorithm
I The messages passed along the edges are probabilities, or beliefs
I BP decoder can be constructed from the Tanner graph:
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Belief Propagation Algorithm

Belief Propagation Algorithm
I Input - LLR

lv = log
Pr (Cv = 1|yv)

Pr (Cv = 0|yv)

yv is the channel output corresponding to the vth codebit, Cv.
I For odd i and e = (v, c) -

xi,e=(v,c) = lv +
∑

e′=(v,c′), c′ 6=c

xi−1,e′

I For even i and e = (v, c) -

xi,e=(v,c) = 2 tanh−1

 ∏
e′=(v′,c), v′ 6=v

tanh
(xi−1,e′

2

)
I The final vth output -

ov = lv +
∑

e′=(v,c′)

x2L,e′
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Neural Belief Propagation

Neural Network Decoder - Y. Be’ery, D. Burshtein
Re-formalize the BP algorithm as deep neural network
I Input - LLR
I For odd i and e = (v, c) -

xi,e=(v,c) = 2 tanh−1

 ∏
e′=(v′,c), v′ 6=v

xi−1,e′


I For even i and e = (v, c) -

xi,e=(v,c) = tanh

1

2

wi,vlv +
∑

e′=(v,c′), c′ 6=c

wi,e,e′xi−1,e′


I The final vth output -

ov = σ

w2L+1,vlv +
∑

e′=(v,c′)

w2L+1,v,e′x2L,e′


where σ(x) ≡ (1 + e−x)

−1
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Neural Belief Propagation

Deep Neural Network Architecture

I Unfolding the BP iterations
I Block code with n = 5 (correspond to 2 BP iterations)
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Hyper-Graph-Network
Decoder



Hyper-Graph-Network Decoders

Hyper-Graph-Network Decoder
I We suggest adding learned components:

I Graph neural network - replace each variable neuron with neural
network

I Hypernetwork - adding network f to predict the weights of the
variables nodes network
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Hyper-Graph-Network Decoders

Hyper-Graph-Network Decoder

I Replace odd j equation with the following equations:

θjg = f(|xj−1|, θf ) (1)

xje = xj(c,v) = g(lv, x
j−1
N(v,c), θ

j
g), (2)

I θjg is the weights of network g at iteration j. θf are the learned
weights of network f

I The absolute value of the message can be seen as measure for
the correctness and the sign corresponding bit value

I In order to focus on the correctness of the message and not the
information bits, the input to f is in absolute value
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Hyper-Graph-Network Decoders

Hyper-Graph-Network Decoder
I In order to regularize training, we replace the arctanh in the

updating equation of even j with Taylor approximation:

xje = xj(c,v) = 2

q∑
m=0

1

2m+ 1

 ∏
e′∈N(c)\{(c,v)}

xj−1e′

2m+1

(3)

I Where q is the Taylor approximation of degree q
I The arctanh activation, has asymptotes in x = 1,−1, and training

with it often explodes. Its Taylor approximation is a well-behaved
polynomial:
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Hyper-Graph-Network Decoders

Hyper-Graph-Network Decoder - Symmetry
Conditions

I For block codes that maintain certain symmetry conditions, the
decoding error is independent of the transmitted codeword

I A direct implication is that we can train our network to decode only
the zero codeword

I There are two symmetry conditions:
I Φ

(
b>xj−1N(v,c)

)
=
(∏K

1 bk

)
Φ
(
xj−1N(v,c)

)
I Ψ

(
−lv,−xj−1N(v,c)

)
= −Ψ

(
lv, x

j−1
N(v,c)

)
I Φ is the check node function and Ψ is the variable node function
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Hyper-Graph-Network Decoders

Hyper-Graph-Network Decoder - Symmetry
Conditions

Our method, by design, maintains the symmetry condition on both the
variable and the check nodes. This is verified in the following lemmas:

Lemma

Assuming that the check node calculation is given by Eq. (3) then the
proposed architecture satisfies the first symmetry condition.

Lemma

Assuming that the variable node calculation is given by Eq. (2) and
Eq. (1), g does not contain bias terms and employs the tanh activation,
then the proposed architecture satisfies the variable symmetry
condition.
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Experiments and Results

Experiments

I We train the proposed architecture with three classes of linear
block codes: Low Density Parity Check (LDPC) codes, Polar
codes and Bose-Chaudhuri-Hocquenghem (BCH) codes

I Training examples are generated as a zero codeword transmitted
over an additive white Gaussian noise

I The learning rate was 1e− 4 for all type of codes
I The decoding network has ten layers which simulates L = 5

iterations of a modified BP algorithm
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Experiments and Results

Experiments

I Each training batch contains examples with different
Signal-To-Noise (SNR) values

I The order of the Taylor series of arctanh is set to q = 1005

I The network f has four layers with 32 neurons at each layer. The
network g has two layer with 16 neurons at each layer

I For BCH codes, we also tested a deeper configuration in which
the network f has four layers with 128 neurons at each layer
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Experiments and Results

Results

I We present the BER for BCH(63,51) with small and large f . As
can be seen, we achieve improvements of 0.45dB, 0.43dB
respectively:
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Experiments and Results

Results

I We present the BER for Polar(128,96) and LDPC MacKay(96,48).
As can be seen, we achieve improvements of 0.48dB, 0.15dB
respectively:
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Conclusions

Conclusions

I We presents graph networks decoder in which the weights are a
function of the node’s input

I We present a method to avoid gradient explosion
I By carefully designing our networks, important symmetry

conditions are met and we can train efficiently
I Our method introduce a new learnable component to neural

decoders
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Conclusions

Gated HyperNet Decoder for Polar Codes

I Gated HyperNet decoding for Polar codes:
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