Fast and Accurate Least-Mean-Squares Solvers

Alaa Maalouf Ibrahim Jubran

Dan Feldman

The Robotics & Big Data Lab, Department of Computer Science, University of Haifa,

Israel

Least-Mean-Squares Solvers

Input: A matrix

$$A = \begin{pmatrix} | & & | \\ a_1 & \dots & a_n \\ | & & | \end{pmatrix}^T \in \mathbb{R}^{n \times d}$$

and a vector

$$b = (b_1, \cdots, b_n)^T \in \mathbb{R}^n$$

 $x^* \in \mathbb{R}^d$

I.

Output:

that minimizes

$$f(||Ax - b||_2^2) + g(x)$$
 constraint
over every $x \in \mathbb{R}^d$, where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$.

- Data analysis
- Prediction
- Feature selection
- Spectral clustering
- Dimensionality reduction

11

Practical Considerations

- Computation time The use of cross validations (CV) with a huge number of hyperparameter is time consuming.
- Space complexity The use of SVD or other factorizations on massive input leads to extensive memory usage.
- Numerical stability There are faster yet numerically unstable solutions.

Theorem [Caratheodory 1907]:

Theorem [Caratheodory 1907]:

Bottleneck

- Computing the *Caratheodory set* in $O(nd + \log(n) d^4)$ time.
- Practically and provably boosting:
 - time complexity of LMS solvers.
 - space complexity of LMS solvers.
 - numerical accuracy of LMS solvers.
- Evaluation on real-world data.
- Full open source code.

<u>Step 3:</u>

Replace μ_2, μ_3, μ_7 by their original points.

Delete remaining points.

<u>Step 4:</u>

Repeat steps above until only few points remain.

<u>Step 1:</u>

Partition the input d-dimensional points into k = 8 equal sized subsets.

 μ_1, \cdots, μ_8 are the subset means.

The mean of μ_1, \dots, μ_8 is equal to *x*, the mean of the input.

<u>Step 2:</u>

- Consider only μ_1, \cdots, μ_8 and *x*.
- Apply Caratheodory to represent *x*
- as a convex combination of a subset μ_2, μ_3, μ_7 of the means.

<u>Step 3:</u>

Replace μ_2, μ_3, μ_7 by their original points.

Delete remaining points.

 $O(nd + d^4 \log n),$ i.e., O(nd) time for

sufficiently large *n*.

 μ_3

<u>Step 4:</u>

Repeat steps above until only few points remain.

Preserve covariance accurately!

Boosting Computation Time On Real-World Data (roughly x50)

Boosting Computation Time

Improving Space Complexity on Huge Data

Linear regression time is huge due to to memory overload.

Improving numerical stability vs. other compression schemes

Similar numerical improvement for Ridge / Lasso / Elastic-net

- Computing the *Caratheodory set* in O(nd) time.
 - Practically and provably boosting:
 - time complexity of LMS solvers.
 - space complexity of LMS solvers.
 - numerical accuracy of LMS solvers.
- Evaluation on real-world data.
 - Full open source code.

Thank you ③

Open source code