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Least-Mean-Squares Solvers
Input: A matrix 

𝐴 =
|
𝑎1
|

…
|
𝑎𝑛
|

𝑇

∈ ℝ𝑛×𝑑

and a vector 
𝑏 = 𝑏1, ⋯ , 𝑏𝑛

𝑇 ∈ ℝ𝑛

that minimizes
𝑓 𝐴𝑥 − 𝑏 2

2 + 𝑔 𝑥

𝑥∗ ∈ ℝ𝑑Output:

over every 𝑥 ∈ ℝ𝑑, where 𝑓:ℝ → ℝ and 𝑔:ℝ𝑑 → ℝ.

constraint
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Applications

• Data analysis

• Prediction

• Feature selection

• Spectral clustering 

• Dimensionality reduction  



Practical Considerations

• Computation time - The use of cross 
validations (CV) with a huge number of 
hyperparameter is time consuming.

• Space complexity - The use of SVD or other 
factorizations on massive input leads to 
extensive memory usage.

• Numerical stability - There are faster yet 
numerically unstable solutions.



Main Technique 

Theorem [Caratheodory 1907]:
𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝7

𝒙



Main Technique 

Theorem [Caratheodory 1907]:
𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝7

𝒙

This Caratheodory set can be 

computed in 𝑂 𝑛2𝑑2 time.

Bottleneck

𝑝7

Goal

𝑶 𝒏𝒅



Our Contribution

• Computing the Caratheodory set in 𝑂 𝑛𝑑 + log 𝑛 𝑑4

time.

• Practically and provably boosting: 
- time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.

• Evaluation on real-world data.

• Full open source code.



Step 1:

Partition the input 

𝑑-dimensional 

points into 𝑘 = 8 equal

sized subsets.

𝜇1, ⋯ , 𝜇8 are the 

subset means.

The mean of 𝜇1, ⋯ , 𝜇8 is

equal to 𝑥, the mean of the 

input.

Caratheodory Booster 
Illustration

𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3



Caratheodory Booster 
Illustration

𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3

Step 2:

Consider only 𝜇1, ⋯ , 𝜇8
and 𝑥.

Apply Caratheodory

to represent 𝑥
as a convex 

combination of 

a subset 𝜇2, 𝜇3, 𝜇7
of the means.



Caratheodory Booster 
Illustration

Step 3:

Replace 𝜇2, 𝜇3, 𝜇7 by

their original points. 

Delete remaining 

points.
𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3



Caratheodory Booster 
Illustration

Step 4:

Repeat steps above

until only few points

remain.

𝑥

𝜇2

𝜇7

𝜇3
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Step 2:

Consider only 𝜇1, ⋯ , 𝜇8
and 𝑥.
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to represent 𝑥
as a convex 

combination of 
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𝑥

𝜇1

𝜇2

𝜇3

𝜇4

𝜇5

𝜇7

𝜇8

𝜇6

𝜇9



Caratheodory Booster 
Illustration

Step 3:

Replace 𝜇2, 𝜇3, 𝜇7 by

their original points. 

Delete remaining 

points.

𝑥
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𝜇2

𝜇3

𝜇4

𝜇5

𝜇7

𝜇8

𝜇6

𝜇9



Caratheodory Booster 
Illustration

Step 4:

Repeat steps above

until only few points

remain.

𝑥
𝜇3

𝜇5

𝜇8



Key Observation 

𝐴𝑥 − 𝑏 2
2 = 𝐴 | 𝑏

𝑥
−1 2

2

= 𝐴 𝑏 𝑥′ 2
2

= 𝑥′
𝑇
𝐴 𝑏 𝑇 𝐴 𝑏 𝑥′

𝑥′

Covariance 

matrix

Therefore, for any 𝑚 ≥ 1, 𝐶 ∈ ℝ𝑚×𝑑 and 𝑦 ∈ ℝ𝑚 such that

𝐴 𝑏 𝑇 𝐴 𝑏 = 𝐶 𝑦 𝑇 𝐶 𝑦 ,

we have that:

𝑓 𝐴𝑥 − 𝑏 2
2 + 𝑔 𝑥 = 𝑓 𝑥′

𝑇
𝑃𝑇𝑃𝑥′ + 𝑔 𝑥

= 𝑓 𝑥′
𝑇
𝑍𝑇𝑍𝑥′ + 𝑔 𝑥

= 𝑓 𝐶𝑥 − 𝑦 2
2 + 𝑔 𝑥

𝑃𝑇𝑃 𝑍𝑇𝑍



Maintaining the Covariance 
Matrix

Input:

𝑃 =
|
𝑝1
|

…
|
𝑝𝑛
|

𝑇

∈ ℝ𝑛×𝑑

Immediate:

𝑥 =
𝑃𝑇𝑃

𝑛
=
1

𝑛


𝑖

𝑝𝑖𝑝𝑖
𝑇

𝒙

row 

stacking

𝑝𝑖𝑝𝑖
𝑇

ෞ𝑝1
ෞ𝑝2

ෞ𝑝3

ෞ𝑝4
ෞ𝑝5

ෞ𝑝6

ෞ𝑝𝑛

∈ ℝ𝑑×𝑑

Caratheodory

ෝ𝑝𝑖 ∈ ℝ
𝑑2

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅



𝑛 ⋅ 𝑤2𝑝2
𝑇

𝑛 ⋅ 𝑤5𝑝5
𝑇

𝑛 ⋅ 𝑤6𝑝6
𝑇

𝑇
𝑛 ⋅ 𝑤2𝑝2

𝑇

𝑛 ⋅ 𝑤5𝑝5
𝑇

𝑛 ⋅ 𝑤6𝑝6
𝑇

Maintaining the Covariance 
Matrix

𝒙

ෞ𝑝1
ෞ𝑝2

ෞ𝑝3

ෞ𝑝4
ෞ𝑝5

ෞ𝑝6

ෞ𝑝𝑛

Caratheodory

= 𝑍𝑇𝑍

𝑃𝑇𝑃 = 𝑍𝑇𝑍

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅

ෞ𝑝2

ෞ𝑝5
ෞ𝑝6

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅

Preserve covariance accurately!



Boosting Computation Time On 
Real-World Data (roughly x50)

Our 

compression 

time + LMS 

on small 

data

LMS

on the 

original 

data



Boosting Computation Time



Improving Space Complexity on 
Huge Data

Linear regression time is huge due to to memory overload.

Our smaller data 

less memory usage 

less computational time



Improving numerical stability 
vs. other compression schemes

Similar numerical 

improvement for 

Ridge / Lasso / 

Elastic-net



Summary

• Computing the Caratheodory set in 𝑂 𝑛𝑑 time.

• Practically and provably boosting: 
- time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.

• Evaluation on real-world data.

• Full open source code.



Open source code 

Thank you ☺


