
Fast and Accurate
Least-Mean-Squares

Solvers

Alaa
Maalouf

Ibrahim
Jubran

Dan
Feldman

The Robotics & Big Data Lab,

Department of Computer Science,

University of Haifa,

Israel

Least-Mean-Squares Solvers
Input: A matrix

𝐴 =
|
𝑎1
|

…
|
𝑎𝑛
|

𝑇

∈ ℝ𝑛×𝑑

and a vector
𝑏 = 𝑏1, ⋯ , 𝑏𝑛

𝑇 ∈ ℝ𝑛

that minimizes
𝑓 𝐴𝑥 − 𝑏 2

2 + 𝑔 𝑥

𝑥∗ ∈ ℝ𝑑Output:

over every 𝑥 ∈ ℝ𝑑, where 𝑓:ℝ → ℝ and 𝑔:ℝ𝑑 → ℝ.

constraint

Least-Mean-Squares Solvers
Input: A matrix

𝐴 =
|
𝑎1
|

…
|
𝑎𝑛
|

𝑇

∈ ℝ𝑛×𝑑

and a vector
𝑏 = 𝑏1, ⋯ , 𝑏𝑛

𝑇 ∈ ℝ𝑛

that minimizes
𝑓 𝐴𝑥 − 𝑏 2

2 + 𝑔 𝑥

𝑥∗ ∈ ℝ𝑑Output:

over every 𝑥 ∈ ℝ𝑑, where 𝑓:ℝ → ℝ and 𝑔:ℝ𝑑 → ℝ.

constraint

Applications

• Data analysis

• Prediction

• Feature selection

• Spectral clustering

• Dimensionality reduction

Practical Considerations

• Computation time - The use of cross
validations (CV) with a huge number of
hyperparameter is time consuming.

• Space complexity - The use of SVD or other
factorizations on massive input leads to
extensive memory usage.

• Numerical stability - There are faster yet
numerically unstable solutions.

Main Technique

Theorem [Caratheodory 1907]:
𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝7

𝒙

Main Technique

Theorem [Caratheodory 1907]:
𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝7

𝒙

This Caratheodory set can be

computed in 𝑂 𝑛2𝑑2 time.

Bottleneck

𝑝7

Goal

𝑶 𝒏𝒅

Our Contribution

• Computing the Caratheodory set in 𝑂 𝑛𝑑 + log 𝑛 𝑑4

time.

• Practically and provably boosting:
- time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.

• Evaluation on real-world data.

• Full open source code.

Step 1:

Partition the input

𝑑-dimensional

points into 𝑘 = 8 equal

sized subsets.

𝜇1, ⋯ , 𝜇8 are the

subset means.

The mean of 𝜇1, ⋯ , 𝜇8 is

equal to 𝑥, the mean of the

input.

Caratheodory Booster
Illustration

𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3

Caratheodory Booster
Illustration

𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3

Step 2:

Consider only 𝜇1, ⋯ , 𝜇8
and 𝑥.

Apply Caratheodory

to represent 𝑥
as a convex

combination of

a subset 𝜇2, 𝜇3, 𝜇7
of the means.

Caratheodory Booster
Illustration

Step 3:

Replace 𝜇2, 𝜇3, 𝜇7 by

their original points.

Delete remaining

points.
𝑥

𝜇1 𝜇2

𝜇4

𝜇5

𝜇6

𝜇7

𝜇8

𝜇3

Caratheodory Booster
Illustration

Step 4:

Repeat steps above

until only few points

remain.

𝑥

𝜇2

𝜇7

𝜇3

Caratheodory Booster
Illustration

Step 1:

Partition the input

𝑑-dimensional

points into 𝑘 = 8 equal

sized subsets.

𝜇1, ⋯ , 𝜇8 are the

subset means.

The mean of 𝜇1, ⋯ , 𝜇8 is

equal to 𝑥, the mean of the

input.

𝑥

𝜇1

𝜇2

𝜇3

𝜇4

𝜇5

𝜇7

𝜇8

𝜇6

𝜇9

Caratheodory Booster
Illustration

Step 2:

Consider only 𝜇1, ⋯ , 𝜇8
and 𝑥.

Apply Caratheodory

to represent 𝑥
as a convex

combination of

a subset 𝜇2, 𝜇3, 𝜇7
of the means.

𝑥

𝜇1

𝜇2

𝜇3

𝜇4

𝜇5

𝜇7

𝜇8

𝜇6

𝜇9

Caratheodory Booster
Illustration

Step 3:

Replace 𝜇2, 𝜇3, 𝜇7 by

their original points.

Delete remaining

points.

𝑥

𝜇1

𝜇2

𝜇3

𝜇4

𝜇5

𝜇7

𝜇8

𝜇6

𝜇9

Caratheodory Booster
Illustration

Step 4:

Repeat steps above

until only few points

remain.

𝑥
𝜇3

𝜇5

𝜇8

Key Observation

𝐴𝑥 − 𝑏 2
2 = 𝐴 | 𝑏

𝑥
−1 2

2

= 𝐴 𝑏 𝑥′ 2
2

= 𝑥′
𝑇
𝐴 𝑏 𝑇 𝐴 𝑏 𝑥′

𝑥′

Covariance

matrix

Therefore, for any 𝑚 ≥ 1, 𝐶 ∈ ℝ𝑚×𝑑 and 𝑦 ∈ ℝ𝑚 such that

𝐴 𝑏 𝑇 𝐴 𝑏 = 𝐶 𝑦 𝑇 𝐶 𝑦 ,

we have that:

𝑓 𝐴𝑥 − 𝑏 2
2 + 𝑔 𝑥 = 𝑓 𝑥′

𝑇
𝑃𝑇𝑃𝑥′ + 𝑔 𝑥

= 𝑓 𝑥′
𝑇
𝑍𝑇𝑍𝑥′ + 𝑔 𝑥

= 𝑓 𝐶𝑥 − 𝑦 2
2 + 𝑔 𝑥

𝑃𝑇𝑃 𝑍𝑇𝑍

Maintaining the Covariance
Matrix

Input:

𝑃 =
|
𝑝1
|

…
|
𝑝𝑛
|

𝑇

∈ ℝ𝑛×𝑑

Immediate:

𝑥 =
𝑃𝑇𝑃

𝑛
=
1

𝑛

𝑖

𝑝𝑖𝑝𝑖
𝑇

𝒙

row

stacking

𝑝𝑖𝑝𝑖
𝑇

ෞ𝑝1
ෞ𝑝2

ෞ𝑝3

ෞ𝑝4
ෞ𝑝5

ෞ𝑝6

ෞ𝑝𝑛

∈ ℝ𝑑×𝑑

Caratheodory

ෝ𝑝𝑖 ∈ ℝ
𝑑2

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅

𝑛 ⋅ 𝑤2𝑝2
𝑇

𝑛 ⋅ 𝑤5𝑝5
𝑇

𝑛 ⋅ 𝑤6𝑝6
𝑇

𝑇
𝑛 ⋅ 𝑤2𝑝2

𝑇

𝑛 ⋅ 𝑤5𝑝5
𝑇

𝑛 ⋅ 𝑤6𝑝6
𝑇

Maintaining the Covariance
Matrix

𝒙

ෞ𝑝1
ෞ𝑝2

ෞ𝑝3

ෞ𝑝4
ෞ𝑝5

ෞ𝑝6

ෞ𝑝𝑛

Caratheodory

= 𝑍𝑇𝑍

𝑃𝑇𝑃 = 𝑍𝑇𝑍

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅

ෞ𝑝2

ෞ𝑝5
ෞ𝑝6

𝑤2 ⋅

𝑤5 ⋅
𝑤6 ⋅

Preserve covariance accurately!

Boosting Computation Time On
Real-World Data (roughly x50)

Our

compression

time + LMS

on small

data

LMS

on the

original

data

Boosting Computation Time

Improving Space Complexity on
Huge Data

Linear regression time is huge due to to memory overload.

Our smaller data

less memory usage

less computational time

Improving numerical stability
vs. other compression schemes

Similar numerical

improvement for

Ridge / Lasso /

Elastic-net

Summary

• Computing the Caratheodory set in 𝑂 𝑛𝑑 time.

• Practically and provably boosting:
- time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.

• Evaluation on real-world data.

• Full open source code.

Open source code

Thank you ☺

