Fast and Accurate Least-Mean-Squares Solvers

Alaa Maalouf

Ibrahim
Jubran

Dan
Feldman

Least-Mean-Squares Solvers

Input: A matrix

$$
A=\left(\begin{array}{ccc}
\mid & & \mid \\
a_{1} & \ldots & a_{n} \\
\mid & & \mid
\end{array}\right)^{T} \in \mathbb{R}^{n \times d}
$$

and a vector

$$
b=\left(b_{1}, \cdots, b_{n}\right)^{T} \in \mathbb{R}^{n}
$$

Output:

$$
x^{*} \in \mathbb{R}^{d}
$$

that minimizes

$$
\begin{aligned}
& f\left(\|A x-b\|_{2}^{2}\right)+g(x) \\
& \text { over every } x \in \mathbb{R}^{d}, \text { where } f: \mathbb{R} \rightarrow \mathbb{R} \text { and } g: \mathbb{R}^{d} \rightarrow \mathbb{R} \text {. }
\end{aligned}
$$

Least-Mean-Squarac Solvers

In nut: A matrix
Linear $T^{T} \quad\|A x-b\|^{2}+a\|x\|^{2}$

$$
\|A x-b\|_{2}^{2}\left|\begin{array}{c}
a_{n} \\
\\
\end{array}\right| \in \mathbb{R}^{n \times d}
$$

and a vector

Elastic-net regression:

$$
\|A x-b\|_{2}^{2}+
$$

Applications

- Data analysis
- Prediction

- Feature selection
- Spectral clustering

- Dimensionality reduction

- Computation time - The use of cross validations (CV) with a huge number of hyperparameter is time consuming.
- Space complexity - The use of SVD or other factorizations on massive input leads to extensive memory usage.
- Numerical stability - There are faster yet numerically unstable solutions.

Theorem [Caratheodory 1907]:

$$
d+1=3 \text { points }
$$

Main Technique

Theorem [Caratheodory 1907]:

$$
a+1=3 \text { points }
$$

This Caratheodory set can be computed in $O\left(n^{2} d^{2}\right)$ time.

- Computing the Caratheodory set in $O\left(n d+\log (n) d^{4}\right)$ time.
- Practically and provably boosting:
- time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.
- Evaluation on real-world data.
- Full open source code.

Caratheodory Booster Illustration

Step 1:

Partition the input d-dimensional points into $k=8$ equal sized subsets.
μ_{1}, \cdots, μ_{8} are the subset means.

The mean of μ_{1}, \cdots, μ_{8} is equal to x, the mean of the input.

Caratheodory Booster Illustration

Step 2:
Consider only and x.

Apply Caratheodory to represent x as a convex combination of a subset $\mu_{2}, \mu_{3}, \mu_{7}$ of the means.

Caratheodory Booster Illustration

Step 3:

Replace $\mu_{2}, \mu_{3}, \mu_{7}$ by their original points.

Delete remaining points.

Step 4:

Repeat steps above until only few points remain.

Caratheodory Booster Illustration

Step 1:

Partition the input d-dimensional points into $k=8$ equal sized subsets.
μ_{1}, \cdots, μ_{8} are the subset means.

The mean of μ_{1}, \cdots, μ_{8} is equal to x, the mean of the
 input.

Caratheodory Booster Illustration

Step 2:

Consider only μ_{1}, \cdots, μ_{8} and x.
Apply Caratheodory to represent x as a convex combination of a subset $\mu_{2}, \mu_{3}, \mu_{7}$ of the means.

Caratheodory Booster Illustration

Step 3:
Replace $\mu_{2}, \mu_{3}, \mu_{7}$ by their original points.

Delete remaining points.

Caratheodory Booster Illustration

Step 4:
Repeat steps above until only few points remain.

$$
O\left(n d+d^{4} \log n\right)
$$

i.e., O (nd) time for sufficiently large n.

Key Observation

$$
\begin{array}{ll}
=\left\|[A \mid b]\binom{n}{-1}\right\|_{2} & \text { Covariance } \\
=\left\|[A \mid b] x^{\prime}\right\|_{2}^{2} & \text { matrix } \\
=x^{\prime T}[A \mid b]^{T}[A \mid b] x^{\prime} &
\end{array}
$$

Therefore, for any $m \geq 1, C \in \mathbb{R}^{m \times d}$ and $y \in \mathbb{R}^{m}$ such that
$\underbrace{[A \mid b]^{T}[A \mid b]}=\underbrace{[C \mid y]^{T}[C \mid y],}$
we have that: $\quad P^{T} P \quad Z^{T} Z$

$$
\begin{aligned}
f\left(\|A x-b\|_{2}^{2}\right)+g(x) & =f\left(x^{\prime T} P^{T} P x^{\prime}\right)+g(x) \\
& =f\left(x^{\prime T} Z^{T} Z x^{\prime}\right)+g(x) \\
& =f\left(\|C x-y\|_{2}^{2}\right)+g(x)
\end{aligned}
$$

Maintaining the Covariance

 Matrix
Input:

$$
\widehat{p_{1}} w_{2} \cdot \widehat{p_{2}}
$$

$$
P=\left(\begin{array}{ccc}
\mid & & \mid \\
p_{1} & \ldots & p_{n} \\
\mid & & \mid
\end{array}\right)^{T} \in \mathbb{R}^{n \times d}
$$

Immediate:

$$
x=\frac{P^{T} P}{n}=\frac{1}{n} \sum_{i} p_{i} p_{i}^{T}
$$

$$
\in \mathbb{R}^{d \times d}
$$

$\left(\triangle \stackrel{\in \mathbb{R}^{a \times d}}{\Delta} \diamond\right)$ Caratheodory

Maintaining the Covariance

 Matrix
,

$$
P^{T} P=Z^{T} Z
$$

Preserve covariance accurately!

Boosting Computation Time On Real-World Data (roughly x50)

Boosting Computation Time

Improving Space Complexity on Huge Data

Linear regression time is huge due to to memory overload.

Improving numerical stability vs. other compression schemes

Similar numerical
improvement for
Ridge / Lasso /
Elastic-net

Summary

Computing the Caratheodory set in O (nd) time.

- Practically and provably boosting: - time complexity of LMS solvers.
- space complexity of LMS solvers.
- numerical accuracy of LMS solvers.

- Evaluation on real-world data.
- Full open source code.

Thank you ©

 Open source code

