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Problem Formulation - Time-Series Joint Alignment

@ Goal: A system that can align large time-series ensembles.
@ Problem: Existing alignment methods suffer from one or more of the
following problems:

o Computationally expensive

o Don't scale well with N (# of signals) and/or T' (signal length)
o Can't handle multiple classes

o No generalization

@ Our proposed solution:
Diffeomorphic Temporal Alignment Nets (DTAN).
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Diffeomorphic Temporal Alignment Nets - Overview

SR

DTAN

(Train) i/
—/
( V |

DTAN
| (Test) . —

@ A Deep Learing (DL)-based system that aligns time-series ensembles
within-class in an input-dependent manner.

@ Based on the Temporal Transformer Nets (TTN), the time-series analog
of Spatial Transformer Nets [Jaderberg et al., NIPS 2015] .
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@ The diffeomorphism family used in this paper is CPAB [Freifeld et al.,
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CPAB - 1D Example
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Loss Function - Unsupervised / Semi-supervised Framework

@ DTAN is set to minimize the within-class variance of the warped signals:
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Loss Function - Unsupervised / Semi-supervised Framework

@ DTAN is set to minimize the within-class variance of the warped signals:

Fdata (UJ, (Uz)i\il) =
K 4
Zk:l Ni Zi:zi:k

o As well as a regularization term on the warps:
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Freg(w, (U)iLy) =) (6i(w, Uy)) Scpy0i(w, Uy)
@ Where 3cpp is a CPA covariance matrix [Freifeld et al. ICCV 2015;

PAMI 2017] associated with a zero-mean Gaussian smoothness prior
over CPA fields.
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Diffeomorphic Temporal Alignment Nets
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@ floc - 1D-CNN consisting of 3 conv-layers (128-64-64 filters,

respectively).

o Final layer: d = dim(@) = 32 with tanh activation.
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.~ Diffeomorphic Temporal Alignment Nets |
Recurrents DTANSs

@ RDTAN - recurrent warps of the input signals.
@ Shared locnet - # of trainable parameters does not increase.
o Easier optimization framework.

@ Implies a non-stationary velocity field.
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Experiments - Synthetic Data

@ RDTAN Joint Alignment of Synthetic Data.
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o Latent source signals are known (Red).
e Data - source signals warped with random transformations (Grey).
@ Underlying source is unraveled by averaging the aligned signals (Blue).

Shapira Weber et al. DTAN Nov 2019 10 /24



S Eerimentsand Resulis
Synthetic Data - Timing

Alignment timing per test set (in [sec])

# of signals

length 10
64 0.003
128 0.003
256 0.014
512 0.003

102

0.003
0.004
0.038
0.007

103

0.007
0.012
0.042
0.084

104

0.109
0.211
0.455
0.660

@ DTAN joint alignment timing w.r.t. signal’s length and size of the

test-set (16 sets in total).
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Joint Alignment of Real-World data

@ The UCR time-series classification archive (Chen et al. 2015) contains
85 real-world datasets.

@ ECGFiveDays dataset:
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@ The UCR time-series classification archive (Chen et al. 2015) contains
85 real-world datasets.
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Joint Alighment: More Results

(a) FordA — misaligned (b) FordA — aligned
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Joint Alighment: More Results

(e) SwedishLeaf — misaligned (f) SwedishLeaf — aligned
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@ Smoothness prior on the warps prevents unrealistic deformations.
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S EeimensandReults
Regularization effect - W/O

@ Regularization term:

Freg(w, (U)X,) = 377 (0:(w,U1))" S5b,0:(w, U)

@ Smoothness prior on the warps prevents unrealistic deformations.

(c) ECGFiveDays - Without regularization (d) With regularization
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Time-Series Averaging Comparison

Euclidean DBA SoftDTW (y=1.0) DTAN (train) DTAN (test)
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o Euclidean mean - serves as baseline ('"ECG200’ dataset).
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Time-Series Averaging Comparison
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o Euclidean mean - serves as baseline ('"ECG200’ dataset).

@ Dynamic Time Warping Barycenter Averaging - DBA [Petitjean, Pattern
Recognition 2011] and SoftDTW [Cuturi, ICML 2017] ; No
generalization, single class time-series averaging methods.
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Nearest Centroid Classification (NCC) experiment

@ NCC - 1-NN, using each class mean signal as the train set.
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Nearest Centroid Classification (NCC) experiment

@ NCC - 1-NN, using each class mean signal as the train set.

@ Compared DTAN NCC while using euclidean distance to DBA and SoftDTW
while measuring DTW distance.
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Euclidean test accuracy DBA test accuracy SoftDTW test accuracy

@ DTANS test accuracy compared with: Euclidean (93% of the datasets), DBA
(77%) and SoftDTW (62%).
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CNN Classification Experiment

Step 1: minimize
joint alignment loss
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CNN Classification Experiment
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Step 2: Freeze DTAN’s weights Alignment
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CNN Classification Experiment

e —_—] DTAN

Step 3: Connect DTAN to classification network.
Minimize classification loss (i.e., cross-entropy)
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CNN Classification Experiment

— DTAN

Step 4: use entire model — DTAN-CNN
For classification.
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CNN Classification Results

@ DTAN-CNN compared with the same CNN without DTAN.
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CNN Classification Results

@ t-SNE visualization of the original and aligned data, illustrates how
DTAN decreases intra-class variance while increasing inter-class one,
thus improving the performance of classification net.
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CNN Classification Results

@ t-SNE visualization of the original and aligned data, illustrates how

DTAN decreases intra-class variance while increasing inter-class one,

thus improving the performance of classification net.
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Conclusion

@ Goal: statistical analysis of time-series data.
@ Problem: temporal misalignment confounds statistical analysis.

@ Our proposed solution: Diffeomorphic Temporal Alignment Nets
(DTAN).

@ Unsupervised /Semi-supervised DL framework for time-series joint
alignment and averaging.

o Additional contributions: Smoothness prior, RDTAN and DTAN-CNN.

@ Qur code is publicly available at:
https://github.com/BGU-CS-VIL/dtan

Thank You
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