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Nonlinear Misalignment

Problem Formulation - Time-Series Joint Alignment

Goal: statistical analysis of time-series data.

Problem: temporal misalignment confounds statistical analysis.

Solution: align the data.
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Nonlinear Misalignment

Problem Formulation - Time-Series Joint Alignment

Goal: A system that can align large time-series ensembles.

Problem: Existing alignment methods suffer from one or more of the
following problems:

Computationally expensive
Don’t scale well with N (# of signals) and/or T (signal length)
Can’t handle multiple classes
No generalization

Our proposed solution:
Diffeomorphic Temporal Alignment Nets (DTAN).
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Nonlinear Misalignment

Diffeomorphic Temporal Alignment Nets - Overview

A Deep Learing (DL)-based system that aligns time-series ensembles
within-class in an input-dependent manner.

Based on the Temporal Transformer Nets (TTN), the time-series analog
of Spatial Transformer Nets [Jaderberg et al., NIPS 2015] .
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Preliminaries

Preliminaries - CPAB

The diffeomorphism family used in this paper is CPAB [Freifeld et al.,
ICCV 2015; PAMI 2017] .
CPAB - warps which are based on the integration of Continuous
Piecewise-Affine (CPA) velocity fields.
The term “piecewise” is w.r.t. a partition, denoted by Ω, of the signal’s
domain into subintervals.

Figure taken from: Freifeld et al. PAMI 2017
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Preliminaries

CPAB - 1D Example
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Diffeomorphic Temporal Alignment Nets

Loss Function - Unsupervised / Semi-supervised Framework

DTAN is set to minimize the within-class variance of the warped signals:
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As well as a regularization term on the warps:

Freg(w, (Ui)
N
i=1) =

∑N

i=1
(θi(w,Ui))

TΣ−1
CPAθi(w,Ui)

Where ΣCPA is a CPA covariance matrix [Freifeld et al. ICCV 2015;
PAMI 2017] associated with a zero-mean Gaussian smoothness prior
over CPA fields.
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Diffeomorphic Temporal Alignment Nets

Diffeomorphic Temporal Alignment Nets

floc - 1D-CNN consisting of 3 conv-layers (128-64-64 filters,
respectively).

Final layer: d = dim(θ) = 32 with tanh activation.
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Diffeomorphic Temporal Alignment Nets

Recurrents DTANs

RDTAN - recurrent warps of the input signals.

Shared locnet - # of trainable parameters does not increase.

Easier optimization framework.

Implies a non-stationary velocity field.
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Experiments and Results

Experiments - Synthetic Data

RDTAN Joint Alignment of Synthetic Data.

Latent source signals are known (Red).

Data - source signals warped with random transformations (Grey).

Underlying source is unraveled by averaging the aligned signals (Blue).
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Experiments and Results

Synthetic Data - Timing

DTAN joint alignment timing w.r.t. signal’s length and size of the
test-set (16 sets in total).
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Experiments and Results

Joint Alignment of Real-World data

The UCR time-series classification archive (Chen et al. 2015) contains
85 real-world datasets.

ECGFiveDays dataset:
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Experiments and Results

Joint Alignment: More Results
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Experiments and Results

Regularization effect - W/O

Regularization term:

Freg(w, (Ui)
N
i=1) =

∑N

i=1
(θi(w,Ui))

TΣ−1
CPAθi(w,Ui)

Smoothness prior on the warps prevents unrealistic deformations.
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Experiments and Results

Time-Series Averaging Comparison

Euclidean mean - serves as baseline (’ECG200’ dataset).

Dynamic Time Warping Barycenter Averaging - DBA [Petitjean, Pattern
Recognition 2011] and SoftDTW [Cuturi, ICML 2017] ; No
generalization, single class time-series averaging methods.
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Experiments and Results

Nearest Centroid Classification (NCC) experiment

NCC - 1-NN, using each class mean signal as the train set.

Compared DTAN NCC while using euclidean distance to DBA and SoftDTW
while measuring DTW distance.

DTANs test accuracy compared with: Euclidean (93% of the datasets), DBA
(77%) and SoftDTW (62%).
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Experiments and Results

CNN Classification Experiment
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CNN Classification Experiment
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Experiments and Results

CNN Classification Results

DTAN-CNN compared with the same CNN without DTAN.

DTAN-CNN achieved higher, or equal to, correct classification rates on
87% of the datasets (average test accuracy of 5 runs per set).
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Experiments and Results

CNN Classification Results

t-SNE visualization of the original and aligned data, illustrates how
DTAN decreases intra-class variance while increasing inter-class one,
thus improving the performance of classification net.
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Conclusion

Conclusion

Goal: statistical analysis of time-series data.

Problem: temporal misalignment confounds statistical analysis.

Our proposed solution: Diffeomorphic Temporal Alignment Nets
(DTAN).

Unsupervised/Semi-supervised DL framework for time-series joint
alignment and averaging.

Additional contributions: Smoothness prior, RDTAN and DTAN-CNN.

Our code is publicly available at:
https://github.com/BGU-CS-VIL/dtan

Thank You
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