Controlling Neural Level Sets

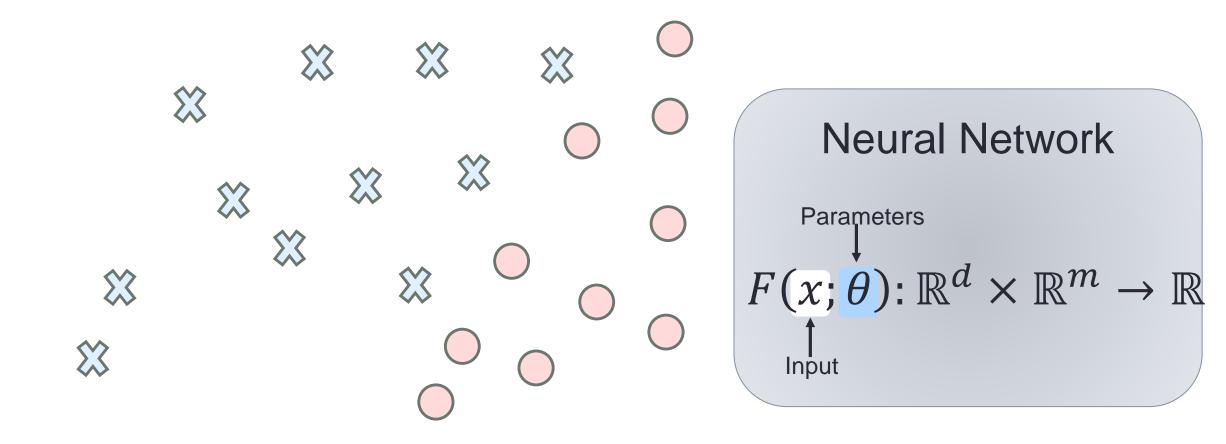
Matan Atzmon

Joint work with Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron and Yaron Lipman

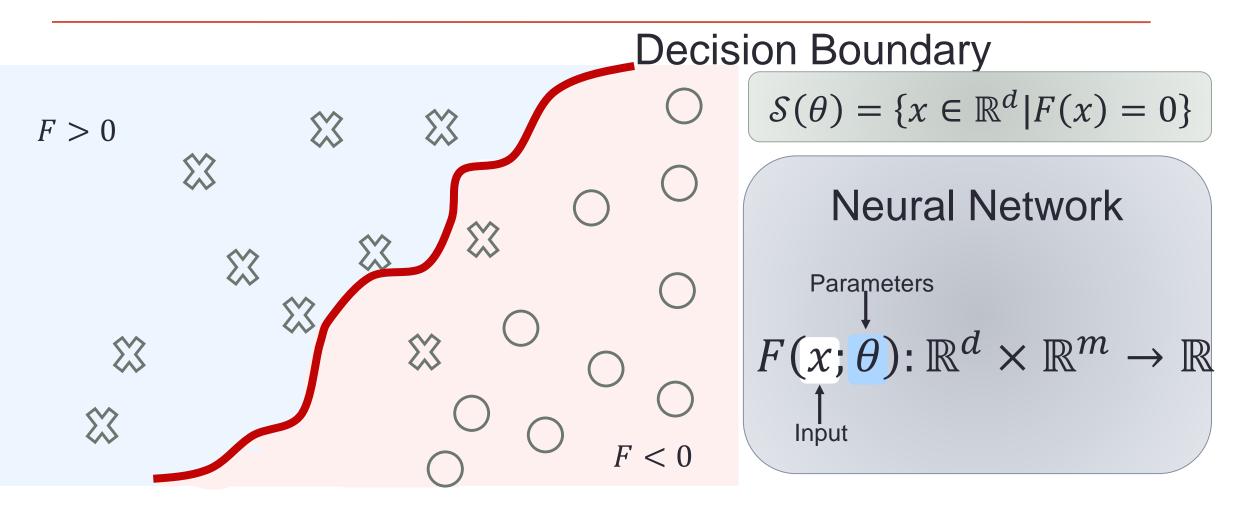
Weizmann Institute of Science

NeurIPSI, November 2019

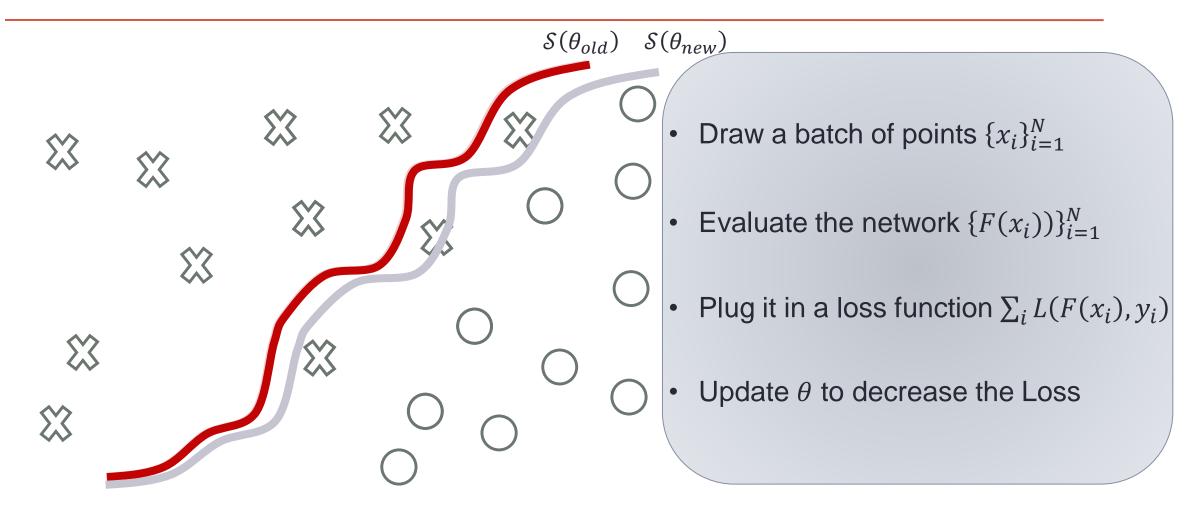
Classification with Neural Networks



Classification with Neural Networks



Training Neural Networks



Motivation

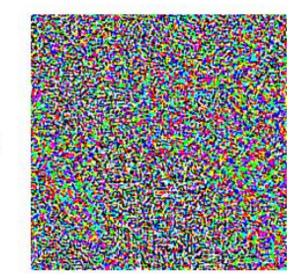
Loss functions(e.g., cross entropy loss) only measure

network output values of training examples

• Therefore, decision boundary is only controlled indirectly

Motivation

F(x) ="panda"



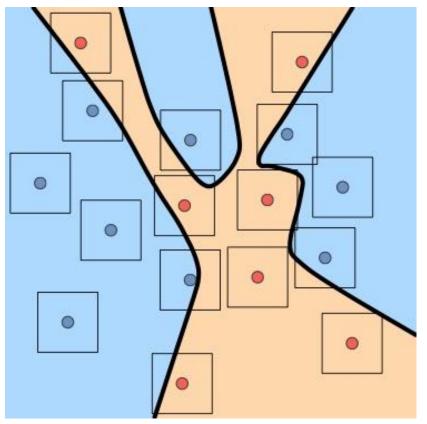
╋

adversarial perturbation

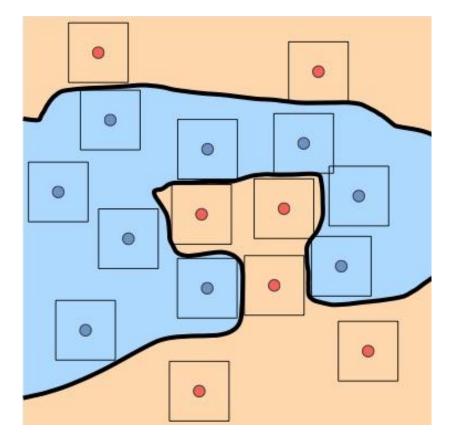
F(x) = "gibbon"

Image taken from [Goodfellow et al., 2014]

Motivation

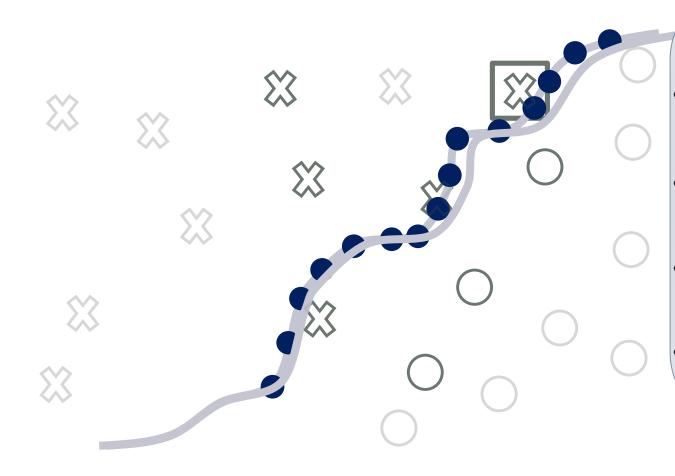


Training with Cross Entropy Loss



Training with our method

Idea – Direct Control of Level Sets



- Draw a sample of points $\{p_i\}$ from the
- Dealed a batch of points $\{x_i\}_{i=1}^N$
- Relate the samples to network parameters Evaluate the *Paetwork* $\{P_i(x_i)\}_{i=1}^N$
- Incorporate samples into a loss function • Plug It in ε_a loss function $\sum_{i=1}^{p} L(\theta_i^{e}, y_i)$, y_i)
- Updating θ moves the decision boundary
- Update θ to decrease the Loss in a controlled fashion

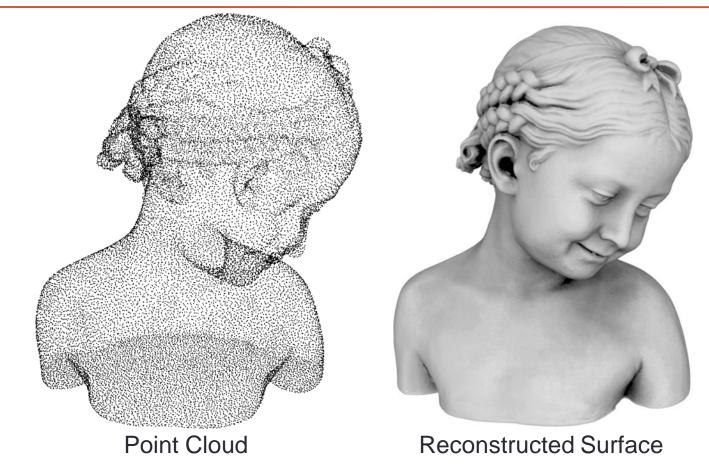
Surface Reconstruction

9

Motivation – Surface Reconstruction



Laser scanning



Slide taken from Pierre Alliez

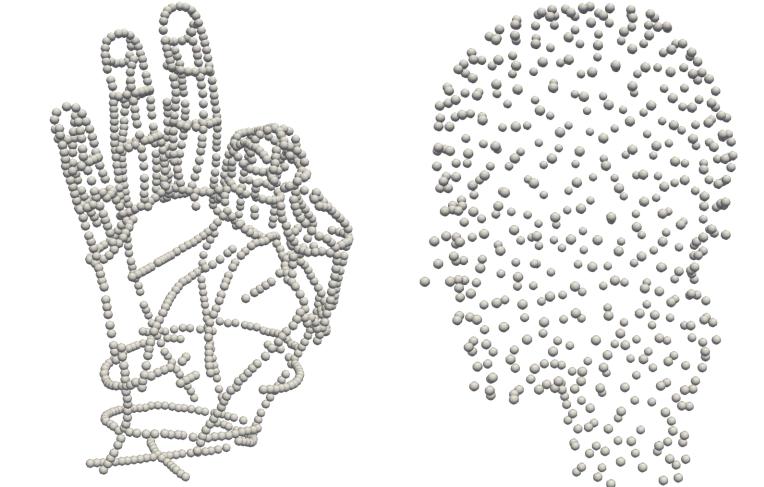
Surface Reconstruction Challenges

• Varying Sampling Density

• Noise

• Outliers

Missing data



Surfaces with Neural Networks

• Model a surface implicitly using a level set of a neural network

$$\mathcal{S}(\theta) = \{ x \in \mathbb{R}^3 | F(x) = 0 \}$$

 In related works, implicit representation were learned using regression, to a function computed from the ground truth surface

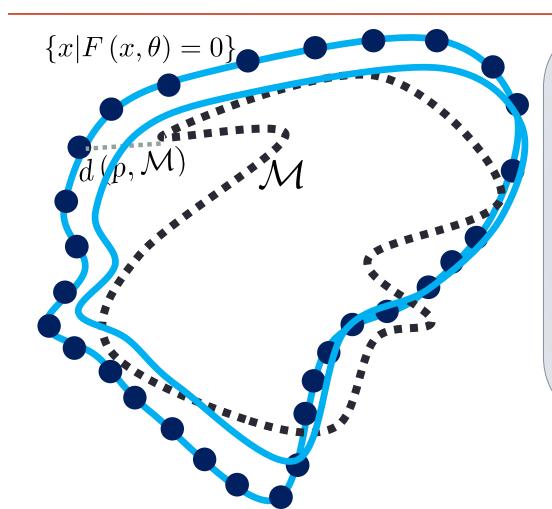
[Park et al. 2019, Chen et al. 2019, Mescheder etl a. 2019]

Our goal is to enable learning from raw data

Point Cloud

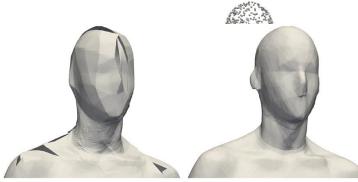
0 Level set of a neural network

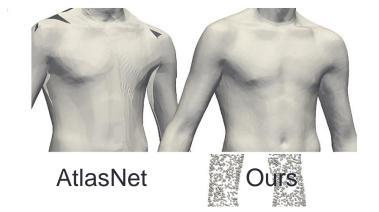
Idea – Direct Control of Level Sets



- Draw a sample $\{p_i\}$ from the network zero level set
- Relate the samples to network parameters $p_i \mapsto p_i\left(\theta\right)$
- Incorporate samples into a loss function $\int_{\mathcal{S}(\theta)} \min_{x \in \mathcal{M}} \|x - p(\theta)\|_2 dv(p) + \lambda \sum_{x \in \mathcal{M}} |F(x)|$
- Updating θ moves the zero level set towards the input/

Results on Faust scans dataset





	Chamfer L1	Chamfer L2
AtlasNet-1 sphere	23.56 ± 2.91	17.69 ± 2.45
AtlasNet-1 patch	18.67 ± 3.45	13.38 ± 2.66
AtlasNet-25 patches	11.54 ± 0.53	7.89 ± 0.42
Ours	10.71 ± 0.63	7.32 ± 0.46

Results on Adversarial Robustness

Method	Dataset	Attack	Test Acc.	Rob. Acc. Xent	Rob. Acc. Margin
Standard	MNIST	$PGD^{40}(\varepsilon = 0.3)$	99.34%	13.59%	0.00%
Madry et al. [2]	MNIST	$PGD^{40}(\varepsilon = 0.3)$	99.35%	96.04%	96.11%
TRADES [4]	MNIST	$PGD^{40}(\varepsilon = 0.3)$	98.97%	96.75%	96.74%
Ours	MNIST	$PGD^{40}(\varepsilon = 0.3)$	99.35%	99.23%	97.35%
Standard	CIFAR10	$PGD^{20} \left(\varepsilon = 0.031 \right)$	83.67%	0.00%	0.00%
Madry et al. [2]	CIFAR10	$PGD^{20}\left(arepsilon=0.031 ight)$	71.86%	39.84%	38.18%
TRADES [4]	CIFAR10	$PGD^{20} \left(\varepsilon = 0.031 \right)$	71.24%	41.89%	38.4%
Ours	CIFAR10	$PGD^{20} \ (\varepsilon = 0.031)$	71.96%	38.45%	38.54%

Results of L_{∞} -bounded attacks compared to other methods.

Our Approach

• Sampling of neural level sets

• Relating the samples' positions to the network parameters

• Achieved by adding a fixed linear layer to the original network

$$p(\theta) = p - D_x F(p;\theta_0)^{\dagger} F(p;\theta)$$

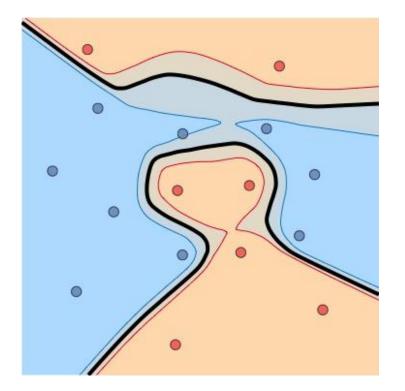
Summary

Incorporate level sets of neural networks into new loss functions

Robustness to adversarial examples

Surface reconstruction from raw data

Generalize SVM to Neural Networks (Not covered)



Future Directions

• Investigating control of intermediate layers' level sets

• Developing sampling conditions to ensure coverage of neural level sets

• Employing additional geometrical regularization to the neural level sets

The End

- Code is online: <u>https://github.com/matanatz/ControllingNeuralLevelsets</u>
- Support
 - ERC Consolidator Grant (LiftMatch)
 - Israel Science Foundation
- Thanks for listening