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Abstract

A fundamental question in learning to classify 3D shapes

is how to treat the data in a way that would allow us to

construct efficient and accurate geometric processing and

analysis procedures. Here, we restrict ourselves to networks

that operate on point clouds. There were several attempts

to treat point clouds as non-structured data sets by which a

neural network is trained to extract discriminative proper-

ties.

The idea of using 3D coordinates as class identifiers mo-

tivated us to extend this line of thought to that of shape clas-

sification by comparing attributes that could easily account

for the shape moments. Here, we propose to add polyno-

mial functions of the coordinates allowing the network to

account for higher order moments of a given shape. Exper-

iments on two benchmarks show that the suggested network

is able to provide state of the art results and at the same

token learn more efficiently in terms of memory and compu-

tational complexity.

1. Introduction

In recent years the popularity and demand for 3D sen-

sors has vastly increased. Applications using 3D sensors

include robot navigation, stereo vision, and advanced driver

assistance systems to name just a few. Recent studies at-

tempt to adjust deep neural networks (DNN) to operate on

3D data representations for diverse geometric tasks. Moti-

vated mostly by memory efficiency, our choice of 3D data

representation is coordinates of point clouds. One school

of thought indeed promoted feeding these geometric fea-

tures as input to deep neural networks that operate on point

clouds for classification of rigid objects.

From a geometry processing point of view, it is well

known that moments characterize a surface and can be use-

ful for the classification task. To highlight the importance

of moments as class identifiers, we first consider the case

of a continuous surface. In this case, geometric moments

uniquely characterize an object. Furthermore, a finite set

of moments is often sufficient as a compact signature that

defines the surface [1]. This idea was classically used for

estimation of surface similarity. For example, if all mo-

ments of two surfaces are the same, the surfaces are con-

sidered to be identical. Moreover, sampled surfaces, such

as point clouds, can be identified by their estimated geo-

metric moments, where it can be shown that the error in-

troduced by the sampling is proportional to the sampling

radius and uniformity. Our goal is to allow a neural net-
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Figure 1: Illustration of the proposed object classification

architecture. The input of the network includes the point

cloud coordinates as well as second order polynomial func-

tions of these coordinates. It enables the network to effi-

ciently learn the shape moments.

work to simply lock onto variations of geometric moments.

One of the main challenges of this approach is that train-

ing a neural network to approximate polynomial functions

requires the network depth and complexity to be logarithmi-

cally inversely proportional to the approximation error [2].

In practice, in order to approximate polynomial functions

of the coordinates for the calculation of geometric moments

the network requires a large number of weights and lay-

ers. Qi et al. [3] proposed a network architecture which

processes point clouds for object classification. The frame-

work they suggested includes lifting the coordinates of each

point into a high dimensional learned space, while ignoring



the geometric structure. An additional pre-processing trans-

formation network was supposed to canonize a given point

cloud, yet it was somewhat surprising to discover that the

transformer results are not invariant to the given orienta-

tions of the point cloud. Learning to lift into polynomial

spaces would have been a challenge using the architecture

suggested in [3]. At the other end, networks that attempt to

process other representations of low dimensional geometric

structures such as meshes, voxels (volumetric grids), and

multi-view projections are often less efficient when consid-

ering both computational and memory complexities.

In this paper, we propose a new network that favors ge-

ometric moments for point cloud object classification. The

most prominent element of the network is supplementing

the given point cloud coordinates together with polynomial

functions of the coordinates, see Fig.1. This simple oper-

ation allows the network to account for higher order mo-

ments of a given shape. Thereby, the suggested network

requires relatively low computational resources in terms of

run-time, and memory in sense of the number of network’s

parameters. Experiments on two benchmarks show that the

suggested scheme is able to learn more efficiently compared

to previous methods in terms of memory and actual compu-

tational complexity while providing more accurate results.

Lastly, it is easy to implement the proposed concept by

just calculating the polynomial functions and concatenating

them as an additional vector to the current input of point

cloud coordinates.

2. Related Efforts

This section reviews some early results relevant to our

discussion. First, we relate to methods used for learning

from processed point clouds such as voxels and trees based

models. Next, we present a line of works that consume

directly point clouds for object classification. The third

part describes early studies of higher order networks,

in which each layer applies polynomial functions to its

inputs, defined by the previous layer’s output. We provide

evidence that similar simple lifting ideas were applied

quite successfully to geometric object recognition and

classification in the late 80’s.

2.1. Learning features from processed point clouds

The most straightforward way to apply convolutional

neural networks (CNNs) to 3D data is by transforming 3D

models to grids of voxels, see for example [4, 5]. A grid

of occupancy voxels is produced and used as input to a 3D

CNN. This approach has produced successful results, but

has some disadvantages such as loss of spatial resolution,

and the use of excessively large memory. For some geomet-

ric tasks that require analysis of fine details, in some cases,

implicit (voxel) representation would probably fail to cap-

ture fine features. Several methods replace the grid occu-

pancy representation with radial basis functions [6], fisher

vectors [7] and mean points [8] for convolving with 3D ker-

nels. However, the 3D grid representation has an inherent

drawback in terms of memory consumption.

KdNet [9] and OcNet [10] approaches exploit tree mod-

els to build a balanced and unbalanced (respectively) hier-

archical structure partitions as a prepossessing stage. Nev-

ertheless, rotation, noise or variation in number of points

force rebuilding those trees from scratch.

In contrast to the methods mentioned above which

encode point clouds in trees or in voxels, our method

consumes the points directly.

2.2. Learning features directly from point clouds

A deep neural network applied to point clouds known as

pointNet was introduced in [3]. That architecture processes

the points’ coordinates for classification and segmentation.

The classification architecture is based on fully connected

layers and symmetry functions, like max pooling, to es-

tablish invariance to potential permutations of the points.

In addition, all Multi-Layer Perceptrons (MLPs) operations

are performed per point, thus, interrelations between points

are accomplished only by weight sharing. Furthermore, the

pointNet architecture also contains a transformer network

for coping with input transformations. It is supposed to

learn a set of transformations that transform the geometric

input structure into some canonical configuration, however

it is computationally expensive. The architecture pipeline

commences with MLPs to generate a per point feature vec-

tor, then, applies max pooling to generate global features

that serve as a signature of the point cloud. Finally, fully

connected layers produce output scores for each class.

PointNet’s main drawback is its limited ability to capture

local structures which has lead to an extensive line of work.

PointNet++ [11] extracts features in local multiscale re-

gions and aggregates local features in hierarchical manner.

RSNet [12] employs recurrent neural networks (RNN) on

point clouds slices for features extraction. KC-Net [13]

uses point cloud local structures by kernel correlation and

graph pooling. DGCNN [14] builds a k-nearest neighbor

(kNN) graph in both point and feature spaces to leverage

neighborhood structures. SO-Net [15] reorganizes the point

cloud into a 2D map and learns node-wise features for the

map. Those methods indeed capture the local structures

by explicit or handcrafted methods of encoding the local

information and have achieved state of the art results in 3D

shape classification and segmentation tasks. However, the

use of geometry context in the form of geometric moments

of 3D shapes is still absent from the literature.



2.3. Learning high order features

Multi-layer perceptron (MLP) is a neural network with

one or more hidden layers of perceptron units. The output φ
of such a unit with an activation function σ, previous layer’s

output η and vector of learned weights w is a first order

perceptron, defined as φ = σ(
∑

j wjηj). Where, σ is a

sigmoid function, σ(a) = 1/(1 + e−a).
In the late 80’s, the early years of artificial intelligence,

Giles et al. [16, 17] proposed extended MLP networks

called higher-order neural networks. Their idea was to

extend all the perceptron units in the network to include

also the sum of products between elements of the previous

layer’s output η. The extended perceptron unit named high-

order unit is defined as

φ = σ
(

∑

i wiηi +
∑

i,j wijηiηj +
∑

i,j,k wijkηiηjηk + . . .
)

(1)

These networks included some or all of the summation

terms. Theoretically, an infinite term of single high order

layer can perform any computation of a first order multi-

layer network [18]. Moreover, the convergence rate using

a single high layer network is higher, usually by orders of

magnitude, compared to the convergence rate of a multi-

layer first order network [17]. Therefore, higher-order net-

works are considered to be powerful, yet, at the cost of high

memory complexity. The number of weights grow expo-

nentially with the number of inputs, which is a prohibitive

factor in many applications.

A special case of high order networks is the square multi-

layer perceptron proposed by Flake et al. [19]. They extend

the perceptron unit with only the squared components of η,

given by

φ = σ

⎛

⎝

∑

i

wiηi +
∑

j

wjη
2
j

⎞

⎠ . (2)

The authors have shown that with a single hidden unit the

network has the ability to generate localized features in ad-

dition to spanning large volumes of the input space, while

avoiding large memory requirements.

3. Methods

The main contribution of this paper is leveraging the

network’s ability to operate on point clouds by adding

polynomial functions to their coordinates. Such a design

can allow the network to account for higher order moments

and therefore achieve higher classification accuracy with

lower time and memory consumption. Next, we show that

it is indeed essential to add polynomial functions to the

input, as learning to multiply inputs items is a challenge for

neural networks.

3.1. Problem definition

The goal of our network is to classify 3D objects given

as point clouds embedded in R
3. A given point cloud X is

defined as a cloud of n points, where each point is described

by its coordinates in R
3. That is, X = {x1, . . . ,xn}, where

each point xj , is given by its coordinates (xj , yj , zj)
T . The

output of the network, should allow us to select the class

Y ∈ L, where L = {1, . . . , L} is a set of L labels. For a

neural network defined by the function g : Rn×3 → R
L,

the desired output is a score vector in R
L, such that

Y = argmaxl∈L g(X; l).

3.2. Geometric Moments

The usage of invariant moments as shape descriptors is

based on the theory of invariant algebra [20] which ad-

dresses mathematical objects that remain unchanged un-

der linear transformations. Sadjadi and Hall [21], were

the first to utilize moments as 3D shape descriptors. Since

the 80s, extensive research has been done exploring mo-

ments as descriptors of shapes in two and three dimensions

[22, 23, 24, 25, 26, 27].

Geometric moments of increasing order represent dis-

tinct spatial characteristics of the point cloud distribution,

implying a strong support for construction of global shape

descriptors. By definition, first order moments represent the

extrinsic centroid; second order moments measure the co-

variance and can also be thought of as moments of inertia.

Second order moments of a set of points X ⊆ R
3 can be

compactly expressed in a 3 × 3 symmetric matrix Σ, Eq.

(3). where xj ∈ X defines a point given as a vector of its

coordinates xj = (xj , yj , zj)
T .

Σ =
∑

j

xjx
T
j . (3)
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Figure 2: The first and second geometric moments dis-

played on a point cloud. Using the first order moments (red

disc), the translation ambiguity can be removed. The prin-

cipal directions d1, d2, d3 (blue arrows) are defined by the

second order geometric moments. Adding these moments

to the input helps the network to resolve the rotation ambi-

guity.

Roughly speaking, we propose to relate between point

clouds by learning to implicitly correlate their moments.
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Figure 3: Approximation of the function x2 by a fully-connected feed forward neural network fn(w) where n denotes the

number of hidden layers. Left: Approximation by different numbers of hidden layers. Right: The error of these functions.

Explicitly, the functions (x2, y2, z2, xy, xz, yz) of each

point are given to a neural network as input features in

order to obtain better accuracy.

Geometric transformations. A desired geometric property

is invariance to rigid transformations. Any rigid transfor-

mation in R
3 can be decomposed into rotation and transla-

tion transformations, each defined by three parameters [1].

A rigid Euclidean transformation T operating on a vector

v ∈ R
3 has the general form

T (v) = R · v + t, (4)

where R is the rotation matrix and t is the translation vector.

Once translation and rotation are resolved, a canonical

form can be realized. The pre-processing procedure trans-

lates the origin to the center of mass given by the first order

moments, and scales it into a unit sphere compensating for

variations in scale. The rotation matrix, determined by three

degrees of freedom, can be estimated by finding the princi-

pal directions of a given object, for example see Figure 2.

The principal directions are defined by the eigenvectors

of the second order moments matrix Σ, see Eq. 3. They

can be used to rotate and translate a given set of points into

a canonical pose, where the axes align with directions of

maximal variations of the given point cloud [28]. The first

principal direction d1, the eigenvector corresponding to the

largest eigenvalue, is the axis along which the largest vari-

ance in the data is obtained. For a set of points X ⊆ R
3, the

kth direction can be found by

dk = argmax
‖d‖=1

dT
(

XkX
T
k

)

d, (5)

where

Xk = X −
k−1
∑

s=1

dsd
T
s X. (6)

3.3. Approximation of polynomial functions

In the suggested architecture we added low order poly-

nomial functions as part of the input. The question arises

whether a network can learn polynomial functions, obviat-

ing the need to add them manually. Here, we first provide

experimental justification to the reason that one should take

into account the ability of a network to learn such functions

as a function of its complexity. Mathematically, we exam-

ined the ability of a network f̂(w, x) to approximate f(x),
where w denotes the network parameters, such that

argmin
f̂(w,x)

‖f̂(w, x)− f(x)‖L∞
< ǫ, (7)

for a given function f : R → R. Theoretically, according

to [29, 2], there exists a ReLU network that can approxi-

mate polynomial functions up to the above accuracy on the

interval [0, 1], with network depth, number of weights, and

computation units of O(ǫ−1) each.

In order to verify these theoretical claims, we performed

experiments to check whether a network can learn the geo-

metric moments from the point cloud coordinates. Figure 3

shows an example for f(x) = x2 and its approximation by

a simple ReLU networks.

The pipeline can be described as follows. First we con-

sider uniform sampling of the interval of [0, 1]; the number

of samples was chosen experimentally to be 1, 000 samples.

Next, we arbitrarily chose the number of nodes in each layer

to be 4, each with ReLU activation, using fully connected

layers (in contrast to the suggested network where we per-

form MLP separately per point). Lastly, we set the weight

initialization to be taken from a normal distribution.

Ideally, networks with a larger number of layers could

better approximate a given function. However, it is still a

challenge to train such networks. Our experiments show

that although a two layer network has achieved the theo-

retical bound, the network had difficulty to achieve more
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Figure 4: Momenet Architecture. Momenet takes as input N points, applies a spatial transformation, and then aggregates

the polynomial input multiplications with the k-nearest-neighbors graph as suggested in [14]. Next, point-wise MLP layers

are followed by max-pooling. The output is a probability distribution over the C classes. 2nd Order Layer aggregates each

point separately with its second order polynomial expansions, then concatenates it with the point’s neighbors.

accurate results than L∞ = 0.006 even when we increased

the number of layers above 6. Furthermore, we tried to add

skip connections from the input to each node in the network;

however, we did not observe a significant improvement.

Comparing two point clouds by comparing their mo-

ments is a well known method in the geometry processing

literature. Yet, we have just shown that the approximation

of polynomial functions is not trivial for a network.

Therefore, adding polynomial functions of the coordinates

as additional inputs could allow the network to learn the

elements of Σ in Eq. 3 and, assuming consistent sampling,

should better capture the geometric structure of the data.

3.4. Momenet Architecture

The network architecture is as follows (figure 4): the net-

work takes N points as input, applies a spatial transforma-

tion resulting in a 3x3 transformation matrix. We multiply

each input point with the transformation matrix to align the

point cloud. Then, the transformed point cloud is fed to our

second-order layer, which is a simple polynomial function

of the point cloud coordinates concatenated with the point’s

neighbors followed by an MLP layer. The higher order fea-

tures are then processed by several point-wise MLP layers

which map the points to higher dimensional space, followed

by max-pooling. Finally, similarly to pointNet, we apply

two fully connected layers of sizes (512, 256) and output a

softmax over the classes.

The baseline architecture of the suggested Momenet net-

work is based on the pointNet architecture. Our main contri-

bution is the addition of polynomial functions as part of the

input domain. The addition of point coordinate powers to

the input is a simple procedure that improves accuracy and

decreases the run time during training and inference. We

also calculated the k-Nearest-Neighbors (kNN) graph from

the point coordinates as suggested in [14] with k = 20. The

output of the kNN block is the distance between a point to

each of its 20 neighbors, which is (x − x′, y − y′, z − z′)
where (x, y, z) and (x′, y′, z′) are the point and neighbor

coordinates respectively. Then, we use a tile operation on

our 2nd order polynomial expansions with the kNN output,

followed by a point-wise MLP layer.

4. Experimental Analysis

4.1. Toy Problem

We first present a toy example to illustrate that extra

polynomial expansions as an input can capture geometric

structures well. Figure 5 (a+b) shows the data and the net-

work predictions for 1000 noisy 2D points, each point be-

longs to one of two spirals. We achieved 98% success with

extra polynomial multiplications, i.e x2, y2, xy, as input to a

one layer network with only 8 hidden ReLU nodes, contrary
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Figure 5: Output response surfaces of a network comprised

of 8 hidden nodes with polynomial expansions (a) and with-

out (b). The output responses of each hidden node of (a) is

presented in (c). The training set (data points) are colored in

red/blue, which indicate positive/negative class respectively

while orange/light blue areas are the corresponding network

predictions.

to the same network without the polynomial multiplications

(only 53% success). Figure 5c shows the decision bound-

aries that were formed from the 8 hidden nodes of network

5a. As expected, radial boundaries can be formed from the

additional polynomial extensions and are crucial to forming

the entire decision surface.

4.2. Classification Performance

Dataset and data processing. Evaluation and compar-

ison of the results to previous efforts is performed on the

ModelNet40 benchmark [5]. ModelNet40 is a synthetic

dataset composed of Computer-Aided Design (CAD) mod-

els, containing 12, 311 CAD models given as triangular

meshes, split to 9, 843 samples for training and 2, 468 for

testing. Pre-processing of each triangular mesh as proposed

in [3] yields 1024 points sampled from each triangular mesh

using the farthest point sampling (FPS) algorithm. Rota-

tion by a random angle, about the y axis, and additive noise

are used for data augmentation. The database contains sam-

ples of very similar categories, like the flower-pot, plant and

vase, for which separation is subjective rather than objective

Method
Mean Class
Accuracy

Overall
Accuracy

PointNet [3] 86.2 89.2

Deep-Sets [30] - 87.1

PointNet++ [11] - 90.7

PointCNN [31] - 91.7

ECC [32] 83.2 87.4

DGCNN [14] 90.2 92.2

Kd-Networks [9] 88.5 91.8

SO-Net [15] 87.3 90.9

KC-Net [13] - 91.0

ShapeContexNet [33] 87.6 90.0

PCNN [6] - 92.3

3DmFV-Net [7] - 91.4

Momenet 90.3 92.4

Table 1: Comparison of classification accuracy (%) on

ModelNet40.

and is a challenge even for a human observer.

Results. Table 1 shows the results of the ModelNet40

classification task for various methods that assume differ-

ent representations of the data. Comparing to DGCNN, our

method achieves slightly better results, doing so while us-

ing kNN only on the input points, and not on the input to all

layers as in DGCNN. When DGCNN is used similarly with

respect to the kNN usage, they report a significant drop in

performance (91.9%), this highlights the power of geomet-

ric moments as features for point clouds.

4.3. Ablation Experiments

Robustness to point density and different orienta-

tions. We evaluate the robustness of our model to vari-

ations in point cloud density and to different orientations.

For these tests, the model was trained in the same manner

as we reported in previous sections, but was evaluated with

the augmented data. Figure 6 shows results for the point

density test. The model is fairly robust to sampling density

variation when the ratio of dropped points is less than half.

Next, we simulate different rotations of the point clouds

along the y-axis. Figure 7 shows a comparison between our

method and DGCNN, our model is more robust for almost

all rotations when compared to DGCNN.

Variations of the Architecture. To verify the effective-

ness of adding the 2nd-order layer, we test different varia-

tions in model architecture with respect to the ModelNet40

dataset. First, we examine different polynomial orders of

the point cloud coordinates, see table 2. It can be seen that

adding polynomial functions of order higher than 2 does not

yield improvements in performance.

We also tested a variation in which the order of poly-










