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• Two main perspectives: Optimization and Sampling
– underlying mathematical objects: derivatives and integrals

• Are they just incommensurate? Frequentist vs 
Bayesian?

• Surely not---mature disciplines blend the two 
– cf. vector-field and Lagrangian/Hamiltonian perspectives in 

mechanics
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• In the current era, work on optimization and 
sampling is quite different
– the latter focuses on equilibrium states
– the former focuses on trajectories

• Glimmers of relationships 
– hybrid Monte Carlo
– geometric connections (Riemannian and symplectic)
– analyses of SDEs that include dimension dependence
– variational inference



Statistics and Computation

• A Grand Challenge of our era: tradeoffs between 
statistical inference and computation
– most data analysis problems have a time budget
– and they’re often embedded in a control problem 

• Optimization has provided the computational model 
for this effort (computer science, not so much)
– it’s provided the algorithms and the insights
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• Modern large-scale statistics has posed new 
challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel—
distributed platforms, etc
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• Modern large-scale statistics has posed new 
challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel—
distributed platforms, etc

• Current focus: what can we do with the following 
ingredients?
– gradients
– stochastics
– acceleration



Algorithmic and Theoretical Progress

• Nonconvex optimization
– avoidance of saddle points
– rates that have dimension dependence
– acceleration, dynamical systems and lower bounds
– statistical guarantees from optimization guarantees

• Computationally-efficient sampling
– nonconvex functions
– nonreversible MCMC
– links to optimization

• Market design
– approach to saddle points
– recommendations and two-way markets



Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
• Is it really true?



Sampling vs. Optimization: The Tortoise 
and the Hare

• I’ll present a class of problems for which a discretized 
Langevin diffusion has a polynomial convergence rate in 
terms of dimension

• Whereas any gradient-based optimization procedure
necessarily has an exponential convergence rate



Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



Nonconvex Optimization in Machine Learning

• Bad local minima used to be thought of as the main 
problem on the optimization side of machine 
learning

• But many machine learning architectures either 
have no local minima (see list later), or stochastic 
gradient seems to have no trouble (eventually) 
finding global optima

• But saddle points abound in these architectures, 
and they cause the learning curve to flatten out, 
perhaps (nearly) indefinitely



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.



Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)



Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)



How Fast Can We Go?

• Important role of lower bounds (Nemirovski & Yudin)
– strip away inessential aspects of the problem to reveal 

fundamentals

• The acceleration phenomenon (Nesterov)
– achieve the lower bounds
– second-order dynamics
– a conceptual mystery

• Our perspective: it’s essential to go to continuous 
time
– the notion of ”acceleration” requires a continuum topology to 

support it



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov
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Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ

14 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider 
two processes,

!"# = −∇' "# !( + 2 !+#,
!-# = −∇' -# !( + 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”



Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance 

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$ !, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk



Part VI: Acceleration and Sampling
With Yi-An Ma, Niladri Chatterji, and Xiang Cheng



Acceleration of SDEs

• The underdamped Langevin stochastic differential 
equation is Nesterov acceleration on the manifold of 
probability distributions, with respect to the KL 
divergence (Ma, et al., to appear)



Part V: Population Risk and Empirical Risk

with Chi Jin and Lydia Liu



Population Risk vs Empirical Risk

Well-behaved population risk ⇒ rough empirical risk

I Even when R is smooth, R̂n can be non-smooth and may even have
many additional local minima (ReLU deep networks).

I Typically ‖R − R̂n‖∞ ≤ O(1/
√
n) by empirical process results.

Can we finds local min of R given only access to the function value R̂n?



Our Contribution

Our answer: Yes! Our SGD approach finds ε−SOSP of F if ν ≤ ε1.5/d ,
which is optimal among all polynomial queries algorithms.

Complete characterization of error ν vs accuracy ε and dimension d .



Part VII: Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar



Two Examples of Current Projects

• How to find saddle points in high dimensions? 

– not just any saddle points; we want to find the Nash equilibria
(and only the Nash equilibria)

• Competitive bandits and two-way markets

– how to find the “best action” when supervised training data is not
available, when other agents are also searching for best actions, 

and when there is conflict (e.g., scarcity)







Perspectives on AI

• The classical “human-imitative” perspective
– cf. AI in the movies, interactive home robotics

• The “intelligence augmentation” (IA) perspective
– cf. search engines, recommendation systems, natural language 

translation
– the system need not be intelligent itself, but it reveals patterns 

that humans can make use of
• The “intelligent infrastructure” (II) perspective

– cf. transportation, intelligent dwellings, urban planning
– large-scale, distributed collections of data flows and loosely-

coupled decisions

M. Jordan (2018), “Artificial Intelligence: The Revolution Hasn’t Happened Yet”, 
Medium.
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• Brains and Minds

• Markets



AI = Data + Algorithms + Markets

• Computers are currently gathering huge amounts of data, 
for and about humans, to be fed into learning algorithms
– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want

• Services are best provided in the context of a market; 
market design can eliminate much of the guesswork
– when data flows in a market, the underlying system can learn 

from that data, so that the market provides better services
– fairness arises not from providing the same service to everyone, 

but by allowing individual utilities to be expressed
• Learning algorithms provide the glue between data and 

the market 



Consider Classical Recommendation 
Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of 

items
• Items are “similar” are they are bought together by 

multiple customers



Consider Classical Recommendation 
Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of 

items
• Items are “similar” are they are bought together by 

multiple customers
• Recommendations are made on the basis of these 

similarities
• These systems have become a commodity



Multiple Decisions with Competition

• Suppose that recommending a certain movie is a good 
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to 

everyone?
• Is it OK to recommend the same street to every driver?
• Is it OK to recommend the same stock purchase to 

everyone?



The Alternative: Create a Market

• A two-way market between consumers and producers
– based on recommendation systems on both sides

• E.g., diners are one side of the market, and restaurants 
on the other side

• E.g., drivers are one side of the market, and street 
segments on the other side

• This isn’t just classical microeconomics; the use of 
recommendation systems is key

University of California, Berkeley
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• Computers are currently gathering huge amounts of 
data, for and about humans, to be fed into learning 
algorithms

– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want

• Services are best provided in the context of a market; 
market design can eliminate much of the guesswork

– when data flows in a market, the underlying system can learn 
from that data, so that the market provides better services

– fairness arises not from providing the same service to 
everyone, but by allowing individual utilities to be expressed



Social Consequences

• By creating a market based on the data flows, new jobs 
are created!

• So here’s a way that AI can be a job creator, and not 
(mostly) a job killer

• This can be done in a wide range of other domains, not 
just music

– entertainment
– information services
– personal services

• The markets-meets-learning approach deals with other 
problems that a pure learning approach does not

– e.g., recommendations when there is scarcity

University of California, Berkeley



Example: Music in the Data Age

• More people are making music than ever before, 
placing it on sites such as SoundCloud

• More people are listening to music than ever before
• But there is no economic value being exchanged 

between producers and consumers
• And, not surprisingly, most people who make music 

cannot do it as their full-time job
– i.e., human happiness is being left on the table

University of California, Berkeley



Example: Music in the Data Age

• More people are making music than ever before, 
placing it on sites such as SoundCloud

• More people are listening to music than ever before
• But there is no economic value being exchanged 

between producers and consumers
• And, not surprisingly, most people who make music 

cannot do it as their full-time job
– i.e., human happiness is being left on the table

• There do exist companies who make money off of this; 
they stream data from SoundCloud to listeners, and 
they make their money … from advertising!  L

University of California, Berkeley



The Alternative: Create a Market

• Use data to provide a dashboard to musicians, letting 
them learn where their audience is

• The musician can give shows where they have an 
audience

• And they can make offers to their fans

University of California, Berkeley



The Alternative: Create a Market

• Use data to provide a dashboard to musicians, letting 
them learn where their audience is

• The musician can give shows where they have an 
audience

• And they can make offers to their fans
• I.e., consumers and producers become linked, and 

value flows: a market is created
– the company that creates this market profits simply by taking 

a cut from the transactions

University of California, Berkeley



Executive Summary

• ML (AI) has come of age
• But it is far from being a solid engineering discipline that 

can yield robust, scalable solutions to modern data-
analytic problems

• There are many hard problems involving uncertainty, 
inference, decision-making, robustness and scale that 
are far from being solved
– not to mention economic, social and legal issues




