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Figure 1: Face swapping and reenactment. Left: Source face swapped onto target. Right: Target video used to control the
expressions of the face appearing in the source image. In both cases, our results appears in the middle. For more information
please visit our website: https://nirkin.com/fsgan.

Abstract

We present Face Swapping GAN (FSGAN) for face swap-
ping and reenactment. Unlike previous work, FSGAN is
subject agnostic and can be applied to pairs of faces with-
out requiring training on those faces. To this end, we de-
scribe a number of technical contributions. We derive a
novel recurrent neural network (RNN)–based approach for
face reenactment which adjusts for both pose and expres-
sion variations and can be applied to a single image or a
video sequence. For video sequences, we introduce contin-
uous interpolation of the face views based on reenactment,
Delaunay Triangulation, and barycentric coordinates. Oc-
cluded face regions are handled by a face completion net-
work. Finally, we use a face blending network for seam-
less blending of the two faces while preserving target skin
color and lighting conditions. This network uses a novel
Poisson blending loss which combines Poisson optimization
with perceptual loss. We compare our approach to exist-
ing state-of-the-art systems and show our results to be both
qualitatively and quantitatively superior.

1. Introduction
Face swapping is the task of transferring a face from

source to target image, so that it seamlessly replaces a face
appearing in the target and produces a realistic result (Fig. 1
left). Face reenactment (aka face transfer or puppeteering)
uses the facial movements and expression deformations of
a control face in one video to guide the motions and de-

formations of a face appearing in a video or image (Fig. 1
right). Both tasks are attracting significant research atten-
tion due to their applications in entertainment [1, 21, 48],
privacy [6, 26, 32], and training data generation.

Previous work proposed either methods for swapping or
for reenactment but rarely both. Earlier methods relied on
underlying 3D face representations [46] to transfer or con-
trol facial appearances. Face shapes were either estimated
from the input image [44, 42, 35] or were fixed [35]. The
3D shape was then aligned with the input images [10] and
used as a proxy when transferring intensities (swapping) or
controlling facial expression and viewpoints (reenactment).

Recently, deep network–based methods were proposed
for face manipulation tasks. Generative adversarial net-
works (GANs) [13], for example, were shown to success-
fully generate realistic images of fake faces. Conditional
GANs (cGANs) [31, 17, 47] were used to transform an im-
age depicting real data from one domain to another and
inspired multiple face reenactment schemes [37, 50, 40].
Finally, the DeepFakes project [12] leveraged cGANs for
face swapping in videos, making swapping widely accessi-
ble to non-experts and receiving significant public attention.
Those methods are capable of generating realistic face im-
ages by replacing the classic graphics pipeline. They all,
however, still implicitly use 3D face representations.

Some methods relied on latent feature space domain sep-
aration [45, 34, 33]. These methods decompose the identity
component of the face from the remaining traits, and en-
code identity as the manifestation of latent feature vectors,
resulting in significant information loss and limiting the
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quality of the synthesized images. Subject specific meth-
ods [42, 12, 50, 22] must be trained for each subject or pair
of subjects and so require expensive subject specific data—
typically thousands of face images—to achieve reasonable
results, limiting their potential usage. Finally, a major con-
cern shared by previous face synthesis schemes, particularly
the 3D based methods, is that they all require special care
when handling partially occluded faces.

We propose a deep learning–based approach to face
swapping and reenactment in images and videos. Unlike
previous work, our approach is subject agnostic: it can be
applied to faces of different subjects without requiring sub-
ject specific training. Our Face Swapping GAN (FSGAN)
is end-to-end trainable and produces photo realistic, tempo-
rally coherent results. We make the following contributions:

• Subject agnostic swapping and reenactment. To the
best of our knowledge, our method is the first to si-
multaneously manipulate pose, expression, and iden-
tity without requiring person-specific or pair-specific
training, while producing high quality and temporally
coherent results.

• Multiple view interpolation. We offer a novel scheme
for interpolating between multiple views of the same
face in a continuous manner based on reenactment, De-
launay Triangulation and barycentric coordinates.

• New loss functions. We propose two new losses: A
stepwise consistency loss, for training face reenact-
ment progressively in small steps, and a Poisson blend-
ing loss, to train the face blending network to seam-
lessly integrate the source face into its new context.

We test our method extensively, reporting qualitative and
quantitative ablation results and comparisons with state of
the art. The quality of our results surpasses existing work
even without training on subject specific images.

2. Related work
Methods for manipulating the appearances of face im-

ages, particularly for face swapping and reenactment, have
a long history, going back nearly two decades. These
methods were originally proposed due to privacy con-
cerns [6, 26, 32] though they are increasingly used for recre-
ation [21] or entertainment (e.g., [1, 48]).

3D based methods. The earliest swapping methods re-
quired manual involvement [6]. An automatic method was
proposed a few years later [4]. More recently, Face2Face
transferred expressions from source to target face [44].
Transfer is performed by fitting a 3D morphable face model
(3DMM) [5, 7, 11] to both faces and then applying the ex-
pression components of one face onto the other with care
given to interior mouth regions. The reenactement method

of Suwajanakorn et al. [42] synthesized the mouth part of
the face using a reconstructed 3D model of (former presi-
dent) Obama, guided by face landmarks, and using a simi-
lar strategy for filling the face interior as in Face2Face. The
expression of frontal faces was manipulated by Averbuch-
Elor et al. [3] by transferring the mouth interior from source
to target image using 2D wraps and face landmarks.

Finally, Nirkin et al. [35] proposed a face swapping
method, showing that 3D face shape estimation is unnec-
essary for realistic face swaps. Instead, they used a fixed
3D face shape as the proxy [14, 29]. Like us, they proposed
a face segmentation method, though their work was not end-
to-end trainable and required special attention to occlusions.
We show our results to be superior than theirs.

GAN-based methods. GANs [13] were shown to gener-
ate fake images with the same distribution as a target do-
main. Although successful in generating realistic appear-
ances, training GANs can be unstable and restricts their
application to low-resolution images. Subsequent meth-
ods, however, improved the stability of the training pro-
cess [28, 2]. Karras et al. [20] train GANs using a pro-
gressive multiscale scheme, from a low to high image reso-
lutions. CycleGAN [52] proposed a cycle consistency loss,
allowing training of unsupervised generic transformations
between different domains. A cGAN with L1 loss was ap-
plied by Isola et al. [17] to derive the pix2pix method, and
was shown to produce appealing synthesis results for appli-
cations such as transforming edges to faces.

Facial manipulation using GANs. Pix2pixHD [47] used
GANs for high resolution image-to-image translation by ap-
plying a multi-scale cGAN architecture and adding a per-
ceptual loss [18]. GANimation [37] proposed a dual gener-
ator cGAN conditioned on emotion action units, that gen-
erates an attention map. This map was used to interpolate
between the reenacted and original images, to preserve the
background. GANnotation [40] proposed deep facial reen-
actment driven by face landmarks. It generates images pro-
gressively using a triple consistency loss: it first frontalizes
an image using landmarks then processes the frontal face.

Kim et al. [22] recently proposed a hybrid 3D/deep
method. They render a reconstructed 3DMM of a specific
subject using a classic graphic pipeline. The rendered im-
age is then processed by a generator network, trained to map
synthetic views of each subject to photo-realistic images.

Finally, feature disentanglement was proposed as a
means for face manipulation. RSGAN [34] disentangles the
latent representations of face and hair whereas FSNet [33]
proposed a latent space which separates identity and geo-
metric components, such as facial pose and expression.



Figure 2: Overview of the proposed FSGAN approach. (a) The recurrent reenactment generator Gr and the segmentation
generatorGs. Gr estimates the reenacted face Fr and its segmentation Sr, whileGs estimates the face and hair segmentation
mask St of the target image It. (b) The inpainting generator Gc inpaints the missing parts of F̃r based on St to estimate the
complete reenacted face Fc. (c) The blending generator Gb blends Fc and Ft, using the segmentation mask St.

3. Face swapping GAN
In this work we introduce the Face Swapping GAN (FS-

GAN), illustrated in Fig. 2. Let Is be the source and It the
target images of faces Fs ∈ Is and Ft ∈ It, respectively.
We aim to create a new image based on It, where Ft is re-
placed by Fs while retaining the same pose and expression.

FSGAN consists of three main components. The first,
detailed in Sec. 3.2 (Fig. 2(a)), consists of a reenactment
generator Gr and a segmentation CNN Gs. Gr is given
a heatmaps encoding the facial landmarks of Ft, and gen-
erates the reenacted image Ir, such that Fr depicts Fs at
the same pose and expression of Ft. It also computes Sr:
the segmentation mask of Fr. Component Gs computes the
face and hair segmentations of Ft.

The reenacted image, Ir, may contain missing face parts,
as illustrated in Fig. 2 and Fig. 2(b). We therefore apply the
face inpainting network, Gc, detailed in Sec. 3.4 using the
segmentation St, to estimate the missing pixels. The final
part of the FSGAN, shown in Fig. 2(c) and Sec. 3.5, is the
blending of the completed face Fc into the target image It
to derive the final face swapping result.

The architecture of our face segmentation network, Gs,
is based on U-Net [38], with bilinear interpolation for up-
sampling. All our other generators—Gr, Gc, and Gb—
are based on those used by pix2pixHD [47], with coarse-
to-fine generators and multi-scale discriminators. Unlike
pix2pixHD, our global generator uses a U-Net architecture
with bottleneck blocks [15] instead of simple convolutions
and summation instead of concatenation. As with the seg-
mentation network, we use bilinear interpolation for upsam-
pling in both global generator and enhancers. The actual
number of layers differs between generators.

Following others [50], training subject agnostic face
reenactment is non-trivial and might fail when applied to
unseen face images related by large poses. To address this
challenge, we propose to break large pose changes into
small manageable steps and interpolate between the clos-
est available source images corresponding to a target’s pose.
These steps are explained in the following sections.

3.1. Training losses

Domain specific perceptual loss. To capture fine facial de-
tails we adopt the perceptual loss [18], widely used in recent
work for face synthesis [40], outdoor scenes [47], and super
resolution [25]. Perceptual loss uses the feature maps of a
pretrained VGG network, comparing high frequency details
using a Euclidean distance.

We found it hard to fully capture details inherent to face
images, using a network pretrained on a generic dataset
such as ImageNet. Instead, our network is trained on the
target domain: We therefore train multiple VGG-19 net-
works [41] for face recognition and face attribute classifi-
cation. Let Fi ∈ RCi×Hi×Wi be the feature map of the i-th
layer of our network, the perceptual loss is given by

Lperc(x, y) =

n∑
i=1

1

CiHiWi
‖Fi(x)− Fi(y)‖1 . (1)

Reconstruction loss. While the perceptual loss of Eq. (1)
captures fine details well, generators trained using only that
loss, often produce images with inaccurate colors, corre-
sponding to reconstruction of low frequency image content.
We hence also applied a pixelwise L1 loss to the generators:

Lpixel(x, y) = ‖x− y‖1. (2)



The overall loss is then given by

Lrec(x, y) = λpercLperc(x, y) + λpixelLpixel(x, y). (3)

The loss in Eq. (3) was used with all our generators.

Adversarial loss. To further improve the realism of our
generated images we use an adversarial objective [47]. We
utilized a multi-scale discriminator consisting of multiple
discriminators,D1, D2, ..., Dn, each one operating on a dif-
ferent image resolution. For a generatorG and a multi-scale
discriminator D, our adversarial loss is defined by:

Ladv(G,D) = min
G

max
D1,...Dn

n∑
i=1

LGAN (G,Di), (4)

where LGAN (G,D) is defined as:

LGAN (G,D) =E(x,y)[logD(x, y)]

+ Ex[log(1−D(x,G(x)))]. (5)

3.2. Face reenactment and segmentation

Given an image I ∈ R3×H×W and a heatmap represen-
tation H(p) ∈ R70×H×W of facial landmarks, p ∈ R70×2,
we define the face reenactment generator, Gr, as the map-
ping Gr :

{
R3×H×W ,R70×H×W

}
→ R3×H×W .

Let vs, vt ∈ R70×3 and es, et ∈ R3, be the 3D land-
marks and Euler angles corresponding to Fs and Ft. We
generate intermediate 2D landmark positions pj by interpo-
lating between es and et, and the centroids of vs and vt,
using intermediate points for which we project vs back to
Is. We define the reenactment output recursively for each
iteration 1 ≤ j ≤ n as

Irj , Srj = Gr(Irj−1
;H(pj)), (6)

Ir0 = Is.

Similar to others [37], the last layer of the global gener-
ator and each of the enhancers in Gr is split into two heads:
the first produces the reenacted image and the second the
segmentation mask. In contrast to binary masks used bu
others [37], we consider the face and hair regions separately.
The binary mask implicitly learned by the reenactment net-
work captures most of the head including the hair, which
we segment separately. Moreover, the additional hair seg-
mentation also improves the accuracy of the face segmen-
tation. The face segmentation generator Gs is defined as
Gr : R3×H×W → R3×H×W , where given an RGB im-
age it output a 3-channels segmentation mask encoding the
background, face, and hair.

Training. Inspired by the triple consistency loss [40], we
propose a stepwise consistency loss. Given an image pair
(Is, It) of the same subject from a video sequence, let Irn

be the reenactment result after n iterations, and Ĩt, Ĩrn be
the same images with their background removed using the
segmentation masks St and Srj , respectively. The stepwise
consistency loss is defined as: Lrec(Ĩrn , Ĩt). The final ob-
jective for the Gr:

L(Gr) =λstepwiseLrec(Ĩrn , Ĩt) + λrecLrec(Ĩr, Ĩt)

+ λadvLadv + λsegLpixel(Sr, St). (7)

For the objective of Gs we use the standard cross-
entropy loss, Lce, with additional guidance from Gr:

L(Gs) = Lce + λreenactmentLpixel(St, S
t
r), (8)

where St
r is the segmentation mask result of Gr(It;H(pt))

and pt is the 2D landmarks corresponding to It.
We train bothGr andGs together, in an interleaved fash-

ion. We start with training Gs for one epoch followed
by the training of Gr for an additional epoch, increasing
λreenactment as the training progresses. We have found that
training Gr and Gs together helps filtering noise learned
from coarse face and hair segmentation labels.

3.3. Face view interpolation

Standard computer graphics pipelines project textured
mesh polygons onto a plane for seamless rendering [16].
We propose a novel, alternative scheme for continuous in-
terpolation between face views. This step is an essential
phase of our method, as it allows using the entire source
video sequence, without training our model on a particular
video frame, making it subject agnostic.

Given a set of source subject images, {Is1 , . . . , Isn},
and Euler angles, {e1, . . . , en}, of the corresponding faces
{Fs1 , . . . ,Fsn}, we construct the appearance map of the
source subject, illustrated in Fig. 3(a). This appearance map
embeds head poses in a triangulated plane, allowing head
poses to follow continuous paths.

We start by projecting the Euler angles {e1, . . . , en}
onto a plane by dropping the roll angle. Using a k-d tree
data structure [16], we remove points in the angular do-
main that are too close to each other, prioritizing the points
for which the corresponding Euler angles have a roll an-
gle closer to zero. We further remove motion blurred im-
ages. Using the remaining points, {x1, . . . , xm}, and the
four boundary points, yi ∈ [−75, 75]× [−75, 75], we build
a mesh, M , in the angular domain by Delaunay Triangula-
tion.

For a query Euler angle, et, of a face, Ft, and its corre-
sponding projected point, xt, we find the triangle T ∈ M
that contains xt. Let xi1 , xi2 , xi3 be the vertices of T and
Isi1 , Isi2 , Isi3 be the corresponding face views. We calcu-
late the barycentric coordinates, λ1, λ2, λ3 of xt, with re-



Figure 3: Face view interpolation. (a) Shows an example of an appearance map of the source subject (Donald Trump). The
green dots represent different views of the source subject, the blue lines represent the Delaunay Triangulation of those views,
and the red X marks the location of the current target’s pose. (b) The interpolated views associated with the vertices of the
selected triangle (represented by the yellow dots). (c) The reenactment result and the current target image.

spect to xi1 , xi2 , xi3 . The interpolation result Ir is then

Ir =

3∑
k=1

λkGr(Isik ;H(pt)), (9)

where pt are the 2D landmarks of Ft. If any vertices of
the triangle are boundary points, we exclude them from the
interpolation and normalize the weights, λi, to sum to one.

A face view query is illustrated in Fig. 3(b,c). To im-
prove interpolation accuracy, we use a horizontal flip to fill
in views when the appearance map is one-sided with respect
to the yaw dimension, and generate artificial views usingGr

when the appearance map is too sparse.

3.4. Face inpainting

Occluded regions in the source face Fs cannot be ren-
dered on the target face, Ft. Nirkin et al. [35] used the seg-
mentations of Fs and Ft to remove occluded regions, ren-
dering (swapping) only regions visible in both source and
target faces. Large occlusions and different facial textures
can cause noticeable artifacts in the resulting images.

To mitigate such problems, we apply a face inpainting
generator, Gc (Fig. 2(b)). Gc renders face image Fs such
that the resulting face rendering Ĩr covers entire segmenta-
tion mask St (of Ft), thereby resolving such occlusion.

Given the reenactment result, Ir, its corresponding seg-
mentation, Sr, and the target image with its background re-
moved, Ĩt, all drawn from the same identity, we first aug-
ment Sr by simulating common face occlusions due to hair,
by randomly removing ellipse-shaped parts, in various sizes
and aspect ratios from the border of Sr. Let Ĩr be Ir with
its background removed using the augmented version of Sr,

and Ic the completed result from applyingGc on Ĩr. We de-
fine our inpainting generator loss as

L(Gc) = λrecLrec(Ic, Ĩt) + λadvLadv, (10)

where Lrec and Ladv are the reconstruction and adversarial
losses of Sec. 3.1.

3.5. Face blending

The last step of the proposed face swapping scheme is
blending of the completed face Fc with its target face Ft

(Fig. 2(c)). Any blending must account for, among oth-
ers, different skin tones and lighting conditions. Inspired by
previous uses of Poisson blending for inpainting [51] and
blending [49], we propose a novel Poisson blending loss.

Let It be the target image, Itr the image of the reenacted
face transferred onto the target image, and St the segmen-
tation mask marking the transferred pixels. Following [36],
we define the Poisson blending optimization as

P (It; I
t
r;St)) = argmin

f
‖∇f −∇Itr‖22

s.t. f(i, j) = It(i, j), ∀ St(i, j) = 0,
(11)

where ∇ (·) is the gradient operator. We combine the Pois-
son optimization in Eq. (11) with the perceptual loss. The
Poisson blending loss is then L(Gb)

L(Gb) = λrecLrec(Gb(It; I
t
r;St), P (It; I

t
r;St))+λadvLadv.

4. Datasets and training
4.1. Datasets and processing

We use the video sequences of the IJB-C dataset [30]
to train our generator, Gr, for which we automatically ex-



tracted the frames depicting particular subjects. IJB-C con-
tains∼11k face videos, of which we used 5,500 which were
in high definition. Similar to the frame pruning approach of
Sec. 3.3, we prune the face views that are too close together
as well as motion-blurred frames.

We apply the segmentation CNN, Gs, to the frames, and
prune the frames for which less than 15% of the pixels in the
face bounding box were classified as face pixels. We used
dlib’s face verification1 to group frames according to the
subject identity, and limit the number of frames per subject
to 100, by choosing frames with the maximal variance in 2D
landmarks. In each training iteration, we choose the frames
Is and It from two randomly chosen subjects.

We trained VGG-19 CNNs for the perceptual loss on
the VGGFace2 dataset [9] for face recognition and the
CelebA [27] dataset for face attribute classification. The
VGGFace2 dataset contains 3.3M images depicting 9,131
identities, whereas CelebA contains 202,599 images, anno-
tated with 40 binary attributes.

We trained the segmentation CNN, Gs, on data used by
others [35], consisting of ∼10k face images labeled with
face segmentations. We also used the LFW Parts Labels
set [19] with ∼3k images labeled for face and hair segmen-
tations, removing the neck regions using facial landmarks.

We used additional 1k images and corresponding hair
segmentations from the Figaro dataset [43]. Finally, Face-
Forensics++ [39] provides 1000 videos, from which they
generated 1000 synthetic videos on random pairs using
DeepFakes [12] and Face2Face [44].

4.2. Training details

We train the proposed generators from scratch, where the
weights were initialized randomly using a normal distribu-
tion. We use Adam optimization [24] (β1 = 0.5, β2 =
0.999) and a learning rate of 0.0002. We reduce this
rate by half every ten epochs. The following parameters
were used for all the generators: λperc = 1, λpixel =
0.1, λadv = 0.001, λseg = 0.1, λrec = 1, λstepwise = 1,
where λreenactment is linearly increased from 0 to 1 during
training. All of our networks were trained on eight NVIDIA
Tesla V100 GPUs and an Intel Xeon CPU. Training of Gs

required six hours to converge, while the rest of the net-
works converged in two days. All our networks, except
for Gs, were trained using a progressive multi scale ap-
proach, starting with a resolution of 128×128 and ending
at 256×256. Inference rate is ∼30fps for reenactment and
∼10fps for swapping on one NVIDIA Tesla V100 GPU.

5. Experimental results
We performed extensive qualitative and quantitative ex-

periments to verify the proposed scheme. We compare our

1Available: http://dlib.net/

method to two previous face swapping methods: Deep-
Fakes [12] and Nirkin et al. [35], and the Face2Face reen-
actment scheme [44]. We conduct all our experiments on
videos from FaceForensics++ [39], by running our method
on the same pairs they used. We further report ablation
studies showing the importance of each component in our
pipeline.

5.1. Qualitative face reenactment results

Fig. 4 shows our raw face reenactment results, without
background removal. We chose examples of varying ethnic-
ity, pose, and expression. A specifically interesting example
can be seen in the rightmost column, showing our method’s
ability to cope with extreme expressions. To show the im-
portance of iterative reenactment, Fig 5 provides reenact-
ments of the same subject for both small and large angle
differences. As evident from the last column, for large an-
gle differences, the identity and texture are better preserved
using multiple iterations.

5.2. Qualitative face swapping results

Fig. 6 offers face swapping examples taken from Face-
Forensics++ videos, without training our model on these
videos. We chose examples that represent different poses
and expression, face shapes, and hair occlusions. Be-
cause Nirkin et al. [35] is an image-to-image face swapping
method, to be fair in our comparison, for each frame in the
target video we select the source frame with the most simi-
lar pose. To compare FSGAN in a video-to-video scenario,
we use our face view interpolation described in Sec. 3.3.

5.3. Comparison to Face2Face

We compare our method to Face2Face [44] on the ex-
pression only reenactment problem. Given a pair of faces
Fs ∈ Is and Ft ∈ It the goal is to transfer the expression
from Is to It. To this end, we modify the corresponding
2D landmarks of Ft by swapping in the mouth points of the
2D landmarks of Fs, similarly to how we generate the in-
termediate landmarks in Sec. 3.2. The reenactment result
is then given by Gr(It;H(p̂t)), where p̂t are the modified
landmarks. The examples are shown in Fig. 7.

5.4. Quantitative results

We report quantitative results, conforming to how we
defined the face swapping problem: we validate how well
methods preserve the source subject identity, while retain-
ing the same pose and expression of the target subject. To
this end, we first compare the face swapping result, Fb, of
each frame to its nearest neighbor in pose from the subject
face views. We use the dlib [23] face verification method
to compare identities and the structural similarity index
method (SSIM) to compare their quality. To measure pose
accuracy, we calculate the Euclidean distance between the

http://dlib.net/


Figure 4: Qualitative face reenactment results. Row 1: The source face for reenactment. Row 2: Our reenactment results
(without background removal). Row 3: The target face from which to transfer the pose and expression.

Figure 5: Reenactment limitations. Top left image trans-
formed onto each of the images in Row 1 (using the same
subject for clarity). Row 2: Reenactment with one iteration.
Row 3: Three iterations.

Euler angles of Fb to the original target image, It. Similarly,
the accuracy of the expression is measured as the Euclidean
distance between the 2D landmarks. Pose error is measured
in degrees and the expression error is measured in pixels.
We computes the mean and variance of those measurements
on the first 100 frames of the first 500 videos in FaceForen-
sics++, averaging them across the videos. As baselines, we
use Nirkin et al. [35] and DeepFakes [12].

Evident from the first two columns of Table 1, our ap-
proach preserves identity and image quality similarly to pre-
vious methods. The two rightmost metrics in Table 1 show

Method verification ↓ SSIM ↑ euler ↓ landmarks ↓
Nirkin et al. [35] 0.39 ± 0.00 0.49 ± 0.00 3.15 ± 0.04 26.5 ± 17.7
DeepFakes [12] 0.38 ± 0.00 0.50 ± 0.00 4.05 ± 0.04 34.1 ± 16.6
FSGAN 0.38 ± 0.00 0.51 ± 0.00 2.49 ± 0.04 22.2 ± 17.7

Table 1: Quantitative swapping results. On FaceForen-
sics++ videos [39].

that our method retains pose and expression much better
than its baselines. Note that the human eye is very sensitive
to artifacts on faces. This should be reflected in the quality
score but those artifacts usually capture only a small part of
the image and so the SSIM score does not reflect them well.

5.5. Ablation study

We performed ablation tests with four configurations of
our method: Gr only, Gr + Gc, Gr + Gb, and our full
pipeline. The segmentation network, Gs, is used in all con-
figurations. Qualitative results are provided in Fig. 8.

Quantitative ablation results are reported in Table 2. Ver-
ification scores show that source identities are preserved
across all pipeline networks. From Euler and landmarks
scores we see that target poses and expressions are best re-
tained with the full pipeline. Error differences are not ex-
treme, suggesting that the inpainting and blending genera-
tors, Gc and Gb, respectively, preserve pose and expression
similarly well. There is a slight drop in the SSIM, due to the
additional networks and processing added to the pipeline.



Figure 6: Qualitative face swapping results on [39]. Results for source photo swapped onto target provided for Nirkin et
al. [35], DeepFakes [12] and our method on images of faces of subjects it was not trained on.

Method verification ↓ SSIM ↑ euler ↓ landmarks ↓
FSGAN (Gr) 0.38 ± 0.00 0.54 ± 0.00 3.16 ± 0.03 22.6 ± 16.5
FSGAN (Gr +Gc) 0.38 ± 0.00 0.54 ± 0.00 3.21 ± 0.08 24.5 ± 17.2
FSGAN (Gr +Gb) 0.38 ± 0.00 0.52 ± 0.00 2.75 ± 0.05 23.6 ± 17.9
FSGAN (Gr +Gc +Gb) 0.38 ± 0.00 0.51 ± 0.00 2.49 ± 0.04 22.2 ± 17.7

Table 2: Quantitative ablation results. On FaceForensics++
videos [39].

6. Conclusion

Limitations. Fig. 5 shows our reenactment results for dif-
ferent facial yaw angles. Evidently, the larger the angular
differences, the more identity and texture quality degrade.
Moreover, too many iterations of the face reenactment gen-
erator blur the texture. Unlike 3DMM based methods, e.g.,
Face2Face [44], which warp textures directly from the im-

age, our method is limited to the resolution of the training
data. Another limitation arises from using a sparse land-
mark tracking method that does not fully capture the com-
plexity of facial expressions.

Discussion. Our method eliminates laborious, subject-
specific, data collection and model training, making face
swapping and reenactment accessible to non-experts. We
feel strongly that it is of paramount importance to pub-
lish such technologies, in order to drive the development
of technical counter-measures for detecting such forgeries,
as well as compel law makers to set clear policies for ad-
dressing their implications. Suppressing the publication of
such methods would not stop their development, but rather
make them available to select few and potentially blindside



Figure 7: Comparison to Face2Face [44] on FaceForen-
sics++ [39]. As demonstrated, our method exhibits far less
artifacts than Face2Face.

policy makers if it is misused.
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Figure 9: Additional qualitative face swapping results on on the Caltech Occluded Faces in the Wild (COFW) dataset [8].

Supplementary Material

A. Additional qualitative results

We offer additional quantitative face swapping results in Fig. 9. We have specifically chosen examples of challenging
pairs, with partial occlusions, different ethnicities and skin colors, demonstrating the competence of our method on a large
variety of subjects. In Fig. 10, we show additional quantitative comparison to Nirkin et al. [35] and DeepFakes [12], and in
Fig. 11 we show another comparison to Face2Face [44]. Please also see the attached video for more results.



Figure 10: Additional qualitative face swapping comparison to Nirkin et al. [35] and DeepFakes [12] on FaceForen-
sics++ [39].



B. The architecture of the generator CNNs
The architecture of the generators, Gr, Gc, and Gb, is based on the pix2pixHD approach [47], and the layout of the global

generator and enhancer is depicted in Fig. 12. The global generator is defined by the number of bottleneck blocks (shown
in purple) used in each resolution scale. In our experiments we used only three resolutions. The enhancer is defined by its
submodule, that is, either the global generator or another enhancer, and its number of bottleneck layers. The generators are
thus given by

Gr = Gc = Enhancer(Global(2, 2, 3), 2),

and
Gb = Enhancer(Global(1, 1, 1), 1).

The face segmentation networkGs is based on the U-Net approach [38], for which we replaced the deconvolution layers with
bilinear interpolation upsampling layers.



Figure 11: Additional qualitative face reenactment comparison to Face2Face [44] on FaceForensics++ [39].



Figure 12: Generator architectures. (a) The global generator is based on a residual variant of the U-Net [38] CNN, using
a number of bottleneck layers per resolution. We replace the simple convolutions with bottleneck blocks (in purple), the
concatenation with summation (plus sign), and the deconvolutions with bilinear upsamplnig following by a convolution. (b)
The enhancer utilizes a submodule and a number of bottleneck layers. The last output block (in blue) is only used in the
enhancer of the finest resolution.


