
Dynamic-Net: Tuning the Objective Without Re-training for Synthesis Tasks

Alon Shoshan
Technion, Israel

shoshan@campus.technion.ac.il

Roey Mechrez
Technion, Israel

roey@campus.technion.ac.il

Lihi Zelnik-Manor
Technion & Alibaba Group

lihi@technion.ac.il

Figure 1: Dynamic-Net: We propose an approach that enables traversing the “objective-space”, spanned by two different
objectives, at test-time, without re-training, as illustrated by the blue dot moving along the blue curve in the plot. This is
different from the common practice of training a separate network for each objective, represented by×’s on the plot. Using a
single Dynamic-Net we can tune the level of stylization of an image, monitor completion quality per image, or control facial
attributes, all interactively at test-time, without re-training. [Animated figure, please view in Acrobat Reader].

Abstract

One of the key ingredients for successful optimization of
modern CNNs is identifying a suitable objective. To date,
the objective is fixed a-priori at training time, and any vari-
ation to it requires re-training a new network. In this pa-
per we present a first attempt at alleviating the need for
re-training. Rather than fixing the network at training time,
we train a “Dynamic-Net” that can be modified at infer-
ence time. Our approach considers an “objective-space”
as the space of all linear combinations of two objectives,
and the Dynamic-Net is emulating the traversing of this
objective-space at test-time, without any further training.
We show that this upgrades pre-trained networks by pro-
viding an out-of-learning extension, while maintaining the
performance quality. The solution we propose is fast and
allows a user to interactively modify the network, in real-
time, in order to obtain the result he/she desires. We show
the benefits of such an approach via several different appli-
cations.

1. Introduction

“I can’t change the direction of the wind, but I can adjust
my sails to always reach my destination”

—Jimmy Dean

A common practice in image generation is to train a
deep network with an appropriate objective. The objec-
tive is often complex and integrates multiple loss terms,
e.g., in style transfer [6, 11], super-resolution [2, 18], in-
painting [16], image-to-image transformations [10], domain
transfer [19, 12] and attribute manipulation [24]. To date,
the choice of the specific objective, and the trade-off be-
tween its multiple terms, are set a-priori during training.
This results in trained networks that are fixed for a specific
working point. This is limiting for three reasons. First, of-
tentimes one would like the flexibility to produce different
results, e.g., stronger or weaker style transfer. Second, in
many cases the best working point is different for different
inputs. Last, it is hard to predict the optimal working point,
especially when the full objective is complex and when ad-

ar
X

iv
:1

81
1.

08
76

0v
2 

 [
cs

.C
V

] 
 2

5 
A

ug
 2

01
9



versarial training [7] is incorporated. Therefore, practition-
ers perform greedy search over the space of objectives dur-
ing training, which demands significant compute time.

In this paper we propose an alternative approach, called
Dynamic-Net, that resolves this for some scenarios. Rather
than training a single fixed network, we split the training
into two phases. In the first, we train the blocks of a “main
network” using a certain objective. At the second phase we
train additional residual [8] “tuning-blocks”, using a dif-
ferent objective. Then, at inference time, we can decide
whether we want to incorporate the tuning-blocks or not and
even control their contribution. This way, we actually have
at hand a dynamic network that can be assembled at infer-
ence time from the main network and tuning-blocks. Our
underlying assumption is that the tuning-blocks can cap-
ture the variation between the two objectives, thus allowing
traversal of the objective space. The Dynamic-Net can thus
be easily geared towards the first or second objective, by
tuning scalar parameters, at test-time.

The key idea behind our approach is inspired by the
Jimmy Dean citation at the beginning of the introduction.
We acknowledge that we cannot directly modify the objec-
tive at test-time. However, what we can do is modify the
latent space representation. Therefore, our approach relies
on manipulation of deep features in order to emulate a ma-
nipulation in objective space.

The main advantages of the Dynamic-Net are three-fold.
First, using a single training session the Dynamic-Net can
emulate networks trained with a variety of different ob-
jectives, for example, networks which produce stronger or
weaker stylization effects, as illustrated in Figure 1. Sec-
ond, it facilitates image-specific and user-specific adapta-
tion, without re-training. Via a simple interface, a user
can interactively choose at real-time the level of styliza-
tion or a preferred inpainting result. Last, the ability to
traverse the objective space at test-time shrinks the search-
space during training. More specifically, we show that even
when the choice of objective for training is sub-optimal, the
Dynamic-Net can reach a better working point.

We show these benefits through a broad range of ap-
plications in image generation, manipulation and recon-
struction. We explore a variety of objectives and architec-
tures, and present both qualitative and quantitative evalua-
tion. Our code is available at https://github.com/
AlonShoshan10/dynamic_net.

2. Related Work
Multi-loss objectives Many state-of-the-art solutions for
image manipulation, generation and reconstruction utilize a
multi-loss objective. For example, Isola et al. [10] combine
L1 and adversarial loss [7] for image-to-image transforma-
tion. Johnson et al. [11] trade-off between a style loss (i.e.
Gram loss) and content loss (i.e. the perceptual loss) for fast

style-transfer and super-resolution, SRGAN [13] balances
between a content loss and adversarial loss for perceptual
super-resolution, and [26] combines L1, a style loss and an
adversarial loss for texture synthesis. In all of these cases,
the weighting between the loss terms is fixed during train-
ing, producing a trained network that operates at a specific
working point.

The impact of the trade-off between multiple objectives
has been discussed before in several contexts. [2] show that
in image restoration algorithms there is an inherent trade-off
between distortion and perceptual quality. They analyze the
trade-off and show the benefits of different working points.
In [6] it is shown empirically that a different balance be-
tween the style loss and content loss leads to different styl-
ization effects.

The importance and difficulty of choosing the optimal
balance between different loss terms is tackled by methods
for multi-task learning [4, 20, 14, 23, 22]. In these works
a variety of solutions have been proposed for learning the
weights for different tasks. Mutual to all of these methods
is that their outcome is a network trained with a certain fixed
balance between the objectives.

Deep feature manipulation The approach we propose is
based on training “tuning-blocks” that learn how to manip-
ulate deep features in order to achieve a certain balance be-
tween the multiple objectives. It is thus related to methods
that employ manipulation of deep features in latent space.
These methods are based on the basic hypothesis of [1] that
“CNNs linearize the manifold of natural images into a Eu-
clidean subspace of deep features”, suggesting that linear
interpolation of deep features makes sense. Inspired by this
hypothesis, [25] learn the linear “direction” that modifies fa-
cial attributes, such as adding glasses or a mustache. In [3]
a more sophisticated manipulation approach is proposed.
They introduced blocks to be added to an auto-encoder net-
work in order to learn the required manipulation to modify a
facial attribute. While producing great results on manipula-
tion of face images, their approach implicitly assumes that
the training images are similar and roughly aligned.

3. Proposed Approach: Dynamic-Net
To date, one has to re-train the network for each ob-

jective. In this section we propose Dynamic-Net that al-
lows changing the objective at inference time, without re-
training. Dynamic-Nets can emulate a plethora of “inter-
mediate working points” between two given objectives O0

andO1, by simply tuning a single parameter. One can think
of this as implicit interpolation between the objectives. Our
solution is relevant in cases where such an interpolation be-
tween the objectives O0 and O1 is meaningful.

To provide some intuition we begin with an example. A
common scenario where an “intermediate working point” is

https://github.com/AlonShoshan10/dynamic_net
https://github.com/AlonShoshan10/dynamic_net


(a) Single-block framework (b) Multi-block framework

Figure 2: Proposed framework: Our training has two steps: (i) First the “main” network θ (green blocks) is trained to
minimize O0. (ii) Then θ is fixed, one or more tuning-blocks ψ are added (orange block), and trained to minimize O1. The
output ŷ1 approximates the output y1 one would get from training the main network θ with objective O1. At test-time, we
can emulate results equivalent to a network trained with objective Om by tuning the parameter αm (in blue) that determines
the latent representation zm. Our method can be applied as (a) a single-block framework or as (b) multi-block framework.

intuitive, is when the objectives consist of a super-position
of two loss terms: O0=LA+λ0LB and O1=LA+λ1LB,
where LA, LB are loss terms, and λ0, λ1 are scalars. As-
suming, without loss of generality, that λ0 ≤ λ1, an inter-
mediate working point corresponds to an objective Om =
LA+λmLB, such that λ0 ≤ λm ≤ λ1. Our goal is to ap-
proximate at inference time the results of a network trained
with any objectiveOm, while using onlyO0 andO1 during
training.

The key idea behind the approach we propose, is to use
interpolation in latent space in order to approximate the in-
termediate objectives. For simplicity of presentation we
start with a simple setup that uses linear interpolation, at
a single layer of the network. Later on we extend to non-
linear interpolation.

3.1. Single-block Dynamic-Net
Our single-block framework is illustrated in Figure 2(a).

It first trains a CNN, to which we refer as the “main network
blocks”, with objectiveO0. We then add an additional block
to the network, to which we refer as the “tuning-block” ψ
that learns the “direction of change” in latent space z, that
corresponds to shifting the objective from O0 to another
working pointO1. Our hypothesis is that walking along the
“direction of change” in latent space can emulate a plethora
of “intermediate” working points Om between O0 and O1.

In further detail, our pipeline is as follows:
. Training:

• Train the main network blocks by setting the objective
to O0.

• Fix the values of the main network, add a tuning-block
ψ between layers l and l+1, and post-train only ψ by
setting the objective to O1. The block ψ will capture

the variation between the latent representations z0 and
z1, that correspond to O0 and O1, respectively.

. Testing:
Fix both the main blocks as well as the tuning block ψ, and
do as follows:

• Propagate the input until layer l of the main network to
get z0.

• Generate an “intermediate” point in latent space, zm =
z0 + αmψ(z0), by tuning the scalar parameter αm.

• Propagate zm through the rest of the main network to
obtain outcome ym that corresponds to objective Om.

The justification for our approach stems from the follow-
ing two assumptions:

Assumption 1 We adopt the hypothesis of [1] that “CNNs
linearize the manifold of natural images into a Euclidean
subspace of deep features”.

This assumption implies that the latent representation of an
intermediate point can be written as zm=z0+αm(z1− z0)
where αm ∈ [0, 1]. Setting αm = 0 yields working point 0
while setting αm=1 yields working point 1.

Assumption 2 For any pair of working pointsO0,O1, with
corresponding latent representations z0, z1, it is possible to
train a block ψ such that z1 ≈ z0 + ψ(z0).

Putting assumptions 1 and 2 together suggests that we can
approximate any intermediate working point Om by com-
puting ẑm = z0 + αmψ(z0) and have that zm ≈ ẑm.

To provide further intuition we revisit the example where
the objectives are of the form O=LA+λLB. Here the pa-
rameter λ controls the balance between the two loss terms



LA and LB. To interpolate in objective space we would like
to modify λ but this is not possible to do directly at test-
time. Instead, our scheme enables interpolation in latent
space by modifying the parameter α, which controls zm.
Our main hypothesis is that the suggested training scheme
will lead to a proportional relation between α and λ. That
is, increasing α will correspond to a monotonic increase in
λ, thus implicitly achieving the desired interpolation in ob-
jective space.

In the more general case, when the objectivesO0 andO1

are of different forms, the interpolation we propose in ob-
jective space cannot be formulated mathematically so intu-
itively. Nonetheless, the conceptual meaning of such inter-
polation could be sensible. For example, we could train an
image generation network with two different adversarial ob-
jectives, one that prefers blond hair and another that prefers
dark hair. Interpolating between the two objectives should
correspond to generating images with varying hair shades.
Therefore, to prove broad applicability of the proposed ap-
proach to a variety of objectives, we present in Section 4
several applications and corresponding results.

3.2. Multi-block Dynamic-Net
In practice, adding a single tuning-block, at a specific

layer, might be insufficient. It limits the manipulation to
linear transformations in a single layer of the latent space.
Therefore, we propose adding multiple blocks, at different
layers of the network as illustrated in Figure 2(b).

The training framework is similar to that of single-block,
except that now we have multiple tuning blocks ψl, each
associated with a corresponding weight αl

m. When training
the tuning-blocks we fix all the weights to αl

m = 1. Then
at inference-time, we can tune each of the weights indepen-
dently to yield a plethora of networks and results.

4. Experiments
In this section we present experiments with several

applications that demonstrate the utility of the proposed
Dynamic-Net and support the validity of our hypotheses. In
order to emphasize broad applicability we selected applica-
tions of varying nature, with a variety of loss functions and
network architectures, as summarized in Table 1. Tuning-
blocks were implemented as conv−relu−conv−relu−conv.
Further implementation details, architectures and parameter
values are listed in the supplementary.

The motivation behind Dynamic-Net was three-fold: (i)
provide ability to modify the working point at test-time, (ii)
allow image-specific adaptation, and (iii) reduce the depen-
dence on optimal objective selection at training time. In
what follows we explore these contributions one by one,
through various applications.

In the next subsections, if not stated otherwise, we used
the multi-block framework while setting all {αl} to be

Application Objectives Architecture

Style Transfer Lcontent,Lstyle [11]
Image Completion LL1,Ladv [10]
Face Generation Ladv [25]

Table 1: Applications summary: We evaluate Dynamic-
Net on three different applications: image manipulation
(style transfer), reconstruction (image completion) and gen-
eration (faces). The applications minimize different loss
terms and are based on a variety of architectures.

equal, i.e., α0 = α1... ≡ α, and we tune α.

4.1. Tuning the objective at test-time
:: Style Transfer

Our first step is to show that the proposed approach can
indeed traverse the objective space, and emulate multiple
meaningful working points at test-time, without re-training.
We chose to show this via experiments in Style Transfer.

Super-position of objectives: We begin with the com-
mon scenario where the objective-space is a super-position
of two loss terms. We followed the setup of fast style trans-
fer [11], where the goal is to transfer the style of a specific
style image to any input image. This is done by training
a CNN to optimize the objective: O = Lcontent+λLstyle,
where Lcontent is the Perceptual loss [6] between the out-
put image and input image, and Lstyle is the Gram loss [6]
between the output image and style image. The hyper-
parameter λ balances between preserving the content image
and transferring the texture and appearance of the style im-
age. Our goal here is to show that tuning α of the Dynamic-
Net at test-time can replace tuning of λ at training-time.

Following the training procedure suggested in Section 3
we first train the main network with objective O0 =
Lcontent + λ0Lstyle, then freeze their weights and train
the tuning-blocks with O1 = Lcontent + λ1Lstyle. Simi-
lar to [11] we use the MS-COCO [15] dataset for training.

Figure 3 shows a few example results together with the
corresponding working points in the objective-space, which
trade-offs the content and style loss terms. We successfully
control the level of stylization, at test-time, by tuning α. An
important result is that the working points emulated by the
Dynamic-Net correspond to fixed networks trained for that
specific working point (marked by ×) in terms of style loss
and content loss.

The figure also compares to interpolation in image space,
i.e., blending images produced by different fixed networks
directly. For this baseline we use the following two net-
works; the main network of our Dynamic-Net and the clos-
est fixed network (in terms of loss) to Dynamic-Net with



λ=2 · 104 λ=5 · 104 λ=105 λ=2 · 105 λ=5 · 105

Fi
xe

d
ne

ts
p

α=0 α=0.25 α=0.5 α=0.75 α=1

Im
ag

e
in

te
rp

O
ur

s
p

Image interp Ours

Figure 3: Tuning the objective at test-time: First row shows the results of the fixed networks, each was trained separately
for a different objective (corresponding to the red ×’s). Second row shows results for image interpolation between two fixed
nets - λ=2 ·104 and λ=5 ·105 (corresponding to the green curve) as baseline. Third row shows results of Dynamic-Net with
three tuning-blocks (main network was trained with λ0=2 · 104 and tuning-blocks with λ0=106) where we increase α from
0 to 1 and α=α0=α1=α2 (corresponding to the blue curve). The graph shows the Lstyle vs. Lcontent where the cyan dots
represent a grid search of Dynamic-Net for 1000 possible values of α0, α1, α2. In the bottom right corner is a zoomed-in
patch of our approach vs. image interpolation for α=0.25, it can be observed that the baseline is dissolving one image upon
the other reader than naturally increase the style as our approach and empirical evidence can be seen in the graph.

α = 1. It can be seen that the results are inferior qual-
itatively and quantitatively, since the style loss does not
change monotonically.

Our method also allow tuning each tuning-block indi-
vidually as can be observed by the grid search in the graph.
Each point of the grid search represent a result produced
with a different value of α0, α1 and α2. This allows us to
traverse the objective space in many interesting ways and
even produce different images for the same working point.

Disjoint objectives: To further explore the generality of
our approach we next experiment with disjoint objectives.
As a case study we chose to traverse between stylization
with two different style images. That is, O0 was trained
with one style image, while O1 was trained with a different
style image. At test time we tune α to traverse between the
two objectives. Figure 4 presents results when the style im-
ages are completely different. We compare our result to two
algorithms, Arbitrary Style Transfer using AdaIN [9] and
Conditional-IN [5]. A third baseline is a simple interpola-



α=0 α=0.25 α=0.5 α=0.75 α=1

A
da

In
p

C
on

di
tio

na
lI

N
p

Im
ag

e
in

te
rp

O
ur

s
p

α=0 α=0.5 α=1

A
da

In
p

C
on

di
tio

na
lI

N
p

Im
ag

e
in

te
rp

O
ur

s
p

Ours Image interp Ours Image interp

Figure 4: Traversing between styles: results of four dif-
ferent methods. Last row shows a zoomed-in patch of our
method vs. image interpolation for α = 0.5. Best viewed
zoomed-in.

α=−1 α=− 1
2

α=0 α=0.5 α=1 α= 3
2

α=2

Figure 5: Objective extrapolation: Style transfer results
where the main-blocks are trained with a high resolution
style image, while the tuning-blocks are trained with a low
resolution style image. Since the tuning-blocks capture the
trend between the two style images the Dynamic-Net can
generate different scales of texture: (green-box) interpo-
lation along the style scale (red-box): extrapolation to the
low-resolution side, and (yellow): extrapolation to the high-
resolution side (style images in the supplementary).

tion in image space between results of two fixed networks.
Conditional-IN reduces each style image into a point in an
embedding space, each style shears the same convolutional
weights of the network but it has its own normalization pa-
rameters. A blending effect is achieved by interpolating
the normalization parameters of two styles. Arbitrary Style
Transfer network consists of a fixed-encoder, AdaIN layer
and a decoder. AdaIN is used to adjust the mean and vari-
ance of the content input image to match those of an arbi-
trary style image. Interpolating between AdaIN parameters
of two styles produces a blending effect. For AdaIN we use
the official implementation and pre-trained network, while
for Conditional-IN we use the official implementation but
trained the network for 10 different styles used in our paper.
For the image interpolation baseline we use the following
two networks; the main network of our Dynamic-Net and a
fixed network trained for the second style image. Note that
both AdaIN and Conditional-IN require specific constraints
on the architecture, while our method is general and can
extend existing high-quality pre-trained networks (as main
networks). This can explain why our results are more faith-
ful to the given style images. In addition, as we can observe
from the zoomed-in images, our method achieves a natural
blending of the two styles as opposed to a ”fade away” ef-
fect of one image on top of another, formed by the baseline.

In Figure 5 the style images are two versions of the same
style image, albeit at different resolutions. It can be seen
that Dynamic-Net provides a smooth transition between
the objectives. We also examine the ability to extrapolate
in objective-space as shown in Figure 5. Specifically, we
wanted to see if we can emulate working points that are not
intermediate to those used during training. Interestingly,
setting α < 0 or α > 1 also leads to meaningful results,
corresponding to extrapolation in scale space of the style.



Male −→ Female

Dark Hair −→ Blond Hair

α=0 =================================⇒ α=1

Figure 6: Controlled generation results: the proposed
method allow us to interpolate between different facial at-
tributes. The values of α are gradually increasing from left
to right, results in a monotonic change of the specific at-
tribute. Most left: α=0 correspond to the baseline result of
DCGAN [21].

4.2. The objective is user specific
:: Face Generation

In some applications the desired output is not only im-
age dependent but further depends on the user’s preference.
This could be observed previously in the style transfer ex-
periments, were every user could prefer different stylization
options. As another example for such a case we chose the
task of face generation, where our approach endows the user
with fine control over certain facial attributes, such as hair
color or gender.

We adopted the architecture of DCGAN [21] that is
trained with a single adversarial loss O = Ladv over the
CelebA [17] dataset. To provide control over an attribute,
such as hair color, we split the dataset into two sub-sets,
e.g., dark hair vs. blond. Both, the main network and the
tuning-blocks were trained with an adversarial loss, but with
different data sub-set. The two objectives are thus disjoint
in this case.

At test-time, the user can tune α to generate a face with
desired properties. For example, the user can tune the hair
color or the masculinity of the generated face. Qualitative
results are presented in Figure 6 for two attributes: male-to-
female and dark hair-to-blond hair. It can be seen that our
Dynamic-Net smoothly traverses between the two objec-
tives, generating plausible images, with a smooth attribute

Input Network results
α=0 α=0.4 α=1

α=0 α=0.4 α=1

α=0 α=0.4 α=1

α=0 α=0.5 α=1

α=0 α=0.4 α=1

Figure 7: Robustness to hyper-parameter: The main net-
work (α = 0) produces artifacts common to adversarial
training while α = 1 produces blurry images common to
L1 loss. Using 0 < α < 1 results in high quality images
preventing the need to retrain the main network numerous
times with different objectives to achieve high quality re-
sults.

control.

4.3. Robustness to hyper-parameter
:: Image Completion

Our last goal is to show that our approach shrinks the
required search space over the objective at training time.
In this experiment we use the task of image completion to
show that by using tuning-blocks we can effectively pre-
vent exhaustive re-training for tuning the objective. We in-
tentionally train the main network for a sub-optimal objec-
tive that leads to poor quality completion and artifacts and
use the tuning-blocks to adjust the objective post training to
achieve high quality results. This was in order to show that
even when the main network is of poor quality, adding the



tuning-blocks with an appropriate α could result in a better
overall network, getting rid of the artifacts. This is possible
because we can traverse the objective space and thus iden-
tify good working points, even when those used for training
were sub-optimal.

In our experimental setup the input is a face image with a
large hole at the center, and the goal is to complete the miss-
ing details in a faithful and realistic manner. As architecture
we adopted a version of pix2pix [10] (see supplementary for
details). The objective for training the main network was
O0 = LL1 + λLadv (λ = 0.005) and three tuning-blocks
were trained with O1 = LL1.

Figure 7 shows some of our results. The main network
(α = 0) produces artifacts common for adversarial losses
while on the other hand using the whole wight of the tuning-
blocks (α = 1) results in blurry images common to L1
losses. Using 0 < α < 1 We traverse the objective space
and produce high quality images. This suggests that during
training rather then trying multiple values for λ one can just
select a single value, and then at test-time adapt α. The
training of the tuning-blocks demonstrate robustness and
implies that our Dynamic-Net forms a good alternative to
the traditional greedy search. Choosing α can be done in-
teractively in real-time, to tailor the network for a specific
image. Since for different images there can be found a bet-
ter objective that suit them specifically, interactively edit-
ing the results per image can be significant and difficult to
achieve using fixed networks. Setting α is fast and provides
an interesting alternative to hyper-parameter search at train-
ing time, both in terms of computing efficiency and as it
enables image and user specific tuning.

5. Method Analysis
Limitations Figure 8 present the limitation of the pro-

posed method, when using extreme objectives. Specifically,
we trained the tuning-blocks without a style loss term, i.e.
O1=Lcontent. We observe that, the simple image interpo-
lation (green curve) achieves better results than our method
(red curve) when approaching near point C, that is, near the
objective O1. The main reason for that, is that the main
network was trained for style transfer, and the ability of the
tuning blocks to “Turn the table upside down” and produce
image with very little style, is limited. Last, we show that
using Dynamic-Net with a smaller range between the ob-
jectives, B→C, (blue curve) outperform both methods and
approximate the fixed nets accurately.

6. Conclusions
We propose Dynamic-Net a novel two phase training

framework that allow traversing the objective space at in-
ference time without re-training the model. We have shown
its broad applicability on variety vision tasks: style transfer,
face generation and image completion. In all application we

Image interp (2nd column) Ours (2nd column)

Figure 8: Failure Case: Top: Each curve corresponds to
a different setting: (green) image-space interpolation be-
tween fixed net (A) and the input image. (red) Dynamic-
Net results with O0 = OA (λ = 106) and O1 = OC .
(blue) Dynamic-Net results with O0 = OB (λ = 104) and
O1 =OA. Bottom: Example images, the box color corre-
spond to the curve color. Training with medium objective
range (B→A) achieved great results, however, increasing
the range too much, i.e. A→C, weaken the results quality.

showed that our method allow easy and intuitive control of
the objective trade-off. This work is a first step in provid-
ing a model that is not limited to a specific static working
point – a dynamic model. Future work include bringing the
dynamic concept to other application and expend it to other
objective spaces.

In the supplementary we present additional results and
provide implementation details.

Acknowledgements
This research was supported by the Israel Science Foun-

dation under Grant 1089/16 and by the Ollendorf founda-
tion.



References
[1] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah

Rifai. Better mixing via deep representations. In ICML,
2013. 2, 3

[2] Yochai Blau and Tomer Michaeli. The perception-distortion
tradeoff. In CVPR, 2018. 1, 2

[3] Ying-Cong Chen, Huaijia Lin, Michelle Shu, Ruiyu Li, Xin
Tao, Xiaoyong Shen, Yangang Ye, and Jiaya Jia. Facelet-
bank for fast portrait manipulation. In CVPR, 2018. 2

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In ICML,
2018. 2

[5] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. Proc. of ICLR, 2,
2017. 5

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016. 1, 2, 4

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.
1, 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 2

[9] Xun Huang and Serge J. Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. 2017 IEEE
International Conference on Computer Vision (ICCV), pages
1510–1519, 2017. 5

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 1, 2, 4, 8

[11] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 1, 2, 4

[12] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,
and Jiwon Kim. Learning to discover cross-domain relations
with generative adversarial networks. In ICML, 2017. 1

[13] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew P Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In CVPR, 2017. 2

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE TPAMI, 2017. 2

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014. 4

[16] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In ECCV, 2018. 1

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
7

[18] Roey Mechrez, Itamar Talmi, Firas Shama, and Lihi Zelnik-
Manor. Maintaining natural image statistics with the contex-
tual loss. In ACCV, 2018. 1

[19] Roey Mechrez, Itamar Talmi, and Lihi Zelnik-Manor. The
contextual loss for image transformation with non-aligned
data. In ECCV, 2018. 1

[20] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning. In
CVPR, 2016. 2

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In ICLR, 2016. 7

[22] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer.
Routing networks: Adaptive selection of non-linear func-
tions for multi-task learning. In ICLR, 2018. 2

[23] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 2

[24] Wei Shen and Rujie Liu. Learning residual images for face
attribute manipulation. In CVPR. IEEE, 2017. 1

[25] Paul Upchurch, Jacob R Gardner, Geoff Pleiss, Robert Pless,
Noah Snavely, Kavita Bala, and Kilian Q Weinberger. Deep
feature interpolation for image content changes. In CVPR,
2017. 2, 4

[26] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel
Cohen-Or, and Hui Huang. Non-stationary texture synthesis
by adversarial expansion. arXiv preprint arXiv:1805.04487,
2018. 2


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	anm0: 


