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DEEP LEARNING IMPACT

• Imagenet dataset

• 1,400,000 images

• 1000 categories

• 150000 for testing, 

• 50000 for validation

Today we get 3.5% by 152 layers
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WHY THINGS WORK BETTER TODAY?

• More data – larger datasets, more access (internet) 

• Better hardware (GPU)

• Better learning regularization (dropout)

• Deep learning impact and success is not unique 
only to image classification.

• But it is still unclear why deep neural networks  are 
so remarkably successful and how they are doing it.
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CUTTING EDGE PERFORMANCE 
IN MANY OTHER APPLICATIONS

• Disease diagnosis [Zhou,  Greenspan & Shen, 2016].

• Language translation [Sutskever et al., 2014].

• Video classification [Karpathy et al., 2014].

• Handwriting recognition [Poznanski & Wolf, 2016].

• Sentiment classification [Socher et al., 2013].

• Image denoising [Remez et al., 2017].

• Depth Reconstruction [Haim et al., 2017].

• Super-resolution [Kim et al., 2016], [Bruna et al., 2016].

• Error correcting codes [Nahmani, 2016] 

• many other applications…
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CLASS AWARE DENOISING

[Remez, Litani, Giryes, Bronstein, 2017]

Class aware 
denoising

Agnostic 
denoising
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DEPTH ESTIMATION BY PHASE CODED CUES

[Haim, Elmalem, 
Bronstein, Marom, 
Giryes, 2017]
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ALL-IN-FOCUS BY PHASE CODED CUES

[Elmalem, Marom, Giryes, 2018] 7UAI Tutorial



COMPRESSED COLOR LIGHT FIELD

[Yovel, Nabati, Mendelovic, Giryes, 2018]
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EXOPLANETS DETECTION

[Zucker and Giryes, 2018] 9UAI Tutorial



DEEP ISP

[E. Schwartz, R. Giryes and A. M. Bronstein, 2018] 10UAI Tutorial



PARTIAL SHAPE ALIGNMENT

[Hanocka et al., 2018]

Alignment is performed by a free form 
deformation generated by a network:
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MESH CNN

• A neural network for mesh data
• Perform a different mesh simplification for different tasks.

[Hanocka et al., 2019]
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ASAP -NETWORK ARCHITECTURE SEARCH

[Noy et al., 2019] 13UAI Tutorial



DEEP NEURAL NETWORKS (DNN)
• One layer of a neural net

• Concatenation of the layers creates the whole net

Φ(𝑊1,𝑊2, … ,𝑊𝐾) = 𝜓 𝑊𝐾 …𝜓 𝑊2𝜓 𝑊1𝑋

𝑋 ∈ ℝ𝑑 𝑾 𝝍 𝝍(𝑾𝑿) ∈ ℝ𝒎

𝑋 is a linear 
operation

𝝍 is a non-linear 
function

𝑉𝑋

𝑿 ∈ ℝ𝒅 𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍
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CONVOLUTIONAL NEURAL NETWORKS (CNN)

• In many cases, 𝑊 is selected to be a convolution.

• This operator is shift invariant.

• CNN are commonly used with images as they are 
typically shift invariant. 

𝑿 ∈ ℝ𝒅 𝑾 𝝍 𝝍(𝑾𝑿) ∈ ℝ𝒎

𝑊 is a linear 
operation

𝐹 is a non-linear 
function

𝑊𝑋
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THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.

• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)

𝑋1 𝑋2 𝑋𝑟𝑋3 𝑋4 … … … …

max
𝑖
𝑋𝑖

Max pooling Mean pooling

1

𝑛
 

𝑖=1

𝑛

𝑋𝑖

𝑙𝑝 pooling
𝑝

 
𝑖=1

𝑛

𝑋𝑖
𝑝

𝑾 𝝍
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A SAMPLE OF 
EXISTING THEORY FOR 

DEEP LEARNING

17UAI Tutorial



WHY DNN WORK?

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN?

What is the role 
of pooling?

What is the role of 
the activation 

function?

How many 
training samples 

do we need?

What is the 
capability of DNN?

What happens to the 
data throughout the 

layers?
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DEEP LEARNING THEORY SURVEY
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SAMPLE OF RELATED EXISTING THEORY

• Universal approximation for any measurable Borel functions [Hornik et. al., 1989, 
Cybenko 1989, Daniely et al., 2017]

• Depth of a network provides an exponential complexity compared to the number
parameters [Montúfar et al. 2014, Cohen et al. 2016, Eldan & Shamir, 2016] and
invariance to more complex deformations [Bruna & Mallat, 2013]

• Number of training samples scales as the number of parameters [Shalev-Shwartz
& Ben-David 2014] or the norm of the weights in the DNN [Neyshabur et al.
2015]

• Pooling relation to shift invariance and phase retrieval [Bruna et al. 2013, 2014]

• Deeper networks have more local minima that are close to the global one and 
less saddle points [Saxe et al. 2014], [Dauphin et al. 2014], [Choromanska et al. 
2015], [Haeffele & Vidal, 2015], [Soudry & Hoffer, 2017]

• Relation to dictionary learning [Papayan et al. 2016].

• Information bottleneck [Shwartz-Ziv & Tishby, 2017], [Tishby & Zaslavsky 2017].

• Invariant representation for certain tasks [Soatto & Chiuso, 2016]

• Bayesian deep learning [Kendall and Gal. 2017] [Patel, Nguyen & Baraniuk , 2016]
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REPRESENTATION POWER

• Neural nets serve as a universal approximation for any 
measurable Borel functions [Cybenko 1989, Hornik 1991].

• In particular, let the non-linearity 𝜓 be a bounded, 
non-constant continuous function, 𝐼𝑑 be the 𝑑-
dimensional hypercube, and 𝐶 𝐼𝑑 be the space of 
continuous functions on 𝐼𝑑. Then for any 𝑓 ∈ 𝐶 𝐼𝑑
and 𝜖 > 0, there exists 𝑚 > 0, and 𝑋 ∈ ℝ𝑑×𝑚, 
𝐵 ∈ ℝ𝑚, 𝑊 ∈ ℝ𝑚 such that the neural network 

𝐹 𝑉 = 𝜓 𝑉𝑋 + 𝐵 𝑊𝑇

approximates 𝑓 with a precision 𝜖:

𝐹 𝑉 − 𝑓 𝑉 < 𝜖, ∀𝑉 ∈ ℝ𝑑
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ESTIMATION ERROR

• The estimation error of a function f by a neural 
networks scales as [Barron 1994].

𝑶
𝑪𝒇

𝑵
+𝑶

𝑵𝒅

𝑳
𝐥𝐨𝐠(𝑳)Smoothness of 

approximated 
function

Number of 
neurons in the 

DNN

Number of 
training 

examples

Input 
dimension
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DEPTH OF THE NETWORK

• Depth allow representing shallow restricted
Boltzmann machines, which has an exponential
number of parameters, compared to the deep one
[Montúfar & Morton, 2015]

• Each DNN layer with ReLU divides the space by a
hyper-plane, folding one part of it.

• Thus, the depth of the network folds the space
into an exponential number of sets compared to
the number of parameters [Montúfar, Pascanu, Cho &

Bengio, 2014]
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DEPTH EFFICIENCY OF CNN

• Function realized by CNN, with ReLU and max-
pooling, of polynomial size requires super-
polynomial size for being approximated by shallow 
network [Telgarsky 2016 ,Cohen et al., 2016].

• Standard convolutional network design has 
learning bias towards statistics of natural images 
[Cohen et al., 2016].
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ROLE OF POOLING

• The pooling stage provides shift invariance [Boureau et 

al. 2010], [Bruna, LeCun & Szlam, 2013].

• A connection is drawn between the pooling stage and 
the phase retrieval methods [Bruna, Szlam & LeCun, 2014].

• This allows calculating Lipchitz constants of each DNN 
layer 𝜓(∙ 𝑋) and empirically recovering the input of a 
layer from its output. 

• However, the Lipchitz constants calculated are very 
loose and no theoretical guarantees are given for the 
recovery.
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SUFFICIENT STATISTIC AND INVARIANCE

• Given a certain task at hand:

• Minimal sufficient statistic guarantees that we can 
replace raw data with a representation with smallest 
complexity and no performance loss. 

• Invariance guarantees that the statistic is constant 
with respect to uninformative transformations of the 
data.

• CNN are shown to have these properties for many 
tasks [Soatto & Chiuso, 2016].

• Good structures of deep networks can generate 
representations that are good for learning with a small 
number of examples [Anselmi et al., 2016].
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SCATTERING TRANSFORMS

• Scattering transform - a cascade of wavelet 
transform convolutions with nonlinear modulus 
and averaging operators.

• Scattering coefficients are stable encodings of 
geometry and texture [Bruna & Mallat, 2013]

27

Original image 
with 𝑑 pixels

Recovery from first 
scattering moments: 
𝑂 log𝑑 coefficients

Recovery from 1st & 2nd

scattering moments: 

𝑂 log2 𝑑 coefficients
Images from slides of Joan Bruna in ICCV 2015 tutorial
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SCATTERING TRANSFORMS AND DNN

• More layers create features that can be made 
invariant to increasingly more complex 
deformations. 

• Deep layers in DNN encode complex, class-specific 
geometry.

• Deeper architectures are able to better capture 
invariant properties of objects and scenes in 
images
[Bruna & Mallat, 2013], [Wiatowski & Bölcskei, 2016]
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SCATTERING TRANSFORMS AS A METRIC

• Scattering transforms may be used as a metric.

• Inverse problems can be solved by minimizing 
distance at the scattering transform domain.

• Leads to remarkable results in super-resolution
[Bruna, Sprechmann & Lecun, 2016]
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SCATTERING SUPER RESOLUTION

Original Best Linear Estimate State-of-the-art Scattering estimate

Images from slides of Joan Bruna in CVPR 2016 tutorial

[Bruna, Sprechmann & Lecun, 2016]
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MINIMIZATION

• The local minima in deep networks are not far from 
the global minimum.

• saddle points are the 
main problem of deep
Learning optimization.

• Deeper networks have 
more local minima but less saddle points. 
[Saxe, McClelland & Ganguli, 2014], [Dauphin, Pascanu, Gulcehre, 
Cho, Ganguli & Bengio, 2014] [Choromanska, Henaff, Mathieu, Ben 
Arous & LeCun, 2015]
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[Choromanska et al., 2015]
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GLOBAL OPTIMALITY IN DEEP LEARNING

• Deep learning is a positively homogeneous 
factorization problem, i.e., ∃𝑝 ≥ 0 such that 
∀𝛼 ≥ 0 DNN obey

Φ 𝛼𝑋1, 𝛼𝑋2, … , 𝛼𝑋𝐾 = 𝛼𝑝Φ 𝑋1, 𝑋2, … , 𝑋𝐾 .

• With proper regularization, local minima are global.

• If the network is large enough, global minima can 
be found by local descent.

Guarantees of proposed 
framework

[Haeffele & Vidal, 2015]
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OUR THEORY

• DNN Classification is affected by the angles in the data [Giryes et al. 2016].

• Generalization error of neural network [Sokolic, Giryes, Sapiro & 
Rodrigues, 2017].

• Relationship between invariance and generalization in deep learning 
[Sokolic, Giryes, Sapiro & Rodrigues, 2017].

• Solving optimization problems with neural networks [Giryes, Eldar,
Bronstein & Sapiro, 2018].

• Robustness to adversarial examples [Jakubovitz & Giryes, 2018].

• Robustness to label noise [Drory, Avidan & Giryes, 2019].

• Observation of k-NN behavior in neural networks to explain the 
coexistence of memorization and generalization in neural networks 
[Cohen, Sapiro & Giryes, 2018].

• Relationship between ETF and dropout [Bank & Giryes, 2019].

• Lautum information for transfer learning [Jakubovitz & Giryes, 2018].
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Outline

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Robustness of 
neural 

networks to 
Adversarial 

attacks
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Generalization 
Error

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Robustness of 
neural 

networks to 
Adversarial 

attacks
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GENERALIZATION ERROR SURVEY
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softmax/ 
linear 

classifier

ASSUMPTIONS

𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍

general non-linearity 
(ReLU, pooling,…) 

𝐓𝐰𝐨

𝐂𝐥𝐚𝐬𝐬𝐞𝐬 𝒘

𝒘𝑻𝜱 𝑾𝟏,𝑾𝟐, … ,𝑾𝑲 = 𝟎

∈ 𝜰

Input Space Feature Space
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GENERALIZATION ERROR (GE)

• In training, we reduce the classification error 
ℓtraining of the training data as the number of 

training examples 𝐿 increases.

• However, we are interested to reduce the error 
ℓtest of the (unknown) testing data as 𝐿 increases.

• The difference between the two is the 
generalization error

GE = ℓtraining − ℓtest

• It is important to understand the GE of DNN
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ESTIMATION ERROR

• The estimation error of a function f by a neural 
networks scales as [Barron 1994].

𝑶
𝑪𝒇

𝑵
+𝑶

𝑵𝒅

𝑳
𝐥𝐨𝐠(𝑳)Smoothness of 

approximated 
function

Number of 
neurons in the 

DNN

Number of 
training 

examples

Input 
dimension
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REGULARIZATION TECHNIQUES

• Weight decay – penalizing DNN weights [Krogh & Hertz, 1992]. 

• Dropout - randomly drop units (along with their connections) 
from the neural network during training [Hinton et al., 2012], 
[Baldi & Sadowski, 2013], Srivastava et al., 2014].

• DropConnect – dropout extension [Wan et al., 2013]

• Batch normalization [Ioffe & Szegedy, 2015].

• Stochastic gradient descent (SGD) [Hardt, Recht & Singer, 
2016].

• Path-SGD [Neyshabur et al., 2015].

• And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et 
al, 2016].
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2 

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

•

41

L is the 
number of 

training 
samples
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾−1 𝑤 2 

𝑖

𝑋𝑖
𝐹

[Neyshabur et al., 2015].

• In [Golowich et al., 2018] an RC bound was provided that is 
independent of the network size
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RETHINKING GENERALIZATION

• Networks with the same architecture may generalize 
well with structured data but overfit if the data is 
given with random labels [Zhang et al., 2017].

• This phenomena is affected by explicit regularization.

• This shows that taking into account only the network 
structure for bouding the generalization error is 
misleading

• We need to seek an alternative to the Rademacher
Complexity and VC-dimension based bounds
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COMPRESSION APPROACH

• Weight in neural networks are very redundant 

• One may compress the network and still get 
approximately the same performance

• One may calculate the RC or VC dimension based 
bounds based on the number of neurons in the 
compressed network 

• This leads to a significantly tighter GE bounds 
[Neyshabur et al., 2018].
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OPTIMIZATION AND GENERALIZATION

• In [Hardt et al., 2016] it is shown that SGD serves 
as a regularizer in the training of neural networks. 

• In [Brutzkus et al., 2018] it is proven formally that 
a two layers neural network trained with SGD 
(under some assumptions) converges to the global 
minimum and generalizes well.

• Training using softmax is shown to lead to large 
margin in linear networks [Soudry et al., 2018]
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DNN INPUT MARGIN

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑋𝑖 > 𝛾

then 𝐺𝐸 ≤  𝑁𝛾/2(Υ) 𝐿

• 𝑁𝛾/2(Υ) is the covering number of the data Υ.

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets larger.

• Bound is independent of depth.

• Our theory relies on the 
robustness framework 
[Xu & Mannor, 2012].

𝑋𝑖
𝑋𝑖

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INPUT MARGIN BOUND

• Maximizing the input margin directly is hard

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑋

𝑖 and other DNN properties

• Theorem 7:

𝛾𝑖𝑛 𝑋𝑖 ≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

sup
𝑋∈Υ

𝑋

𝑋 2
𝐽 𝑋

2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
𝐹

𝑋𝑖

Φ(𝑋𝑖)

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017] 47UAI Tutorial



OUTPUT MARGIN

• Theorem 7:    𝛾𝑖𝑛 𝑋𝑖 ≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

sup
𝑉∈Υ

𝑋

𝑋 2
𝐽 𝑋

2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
𝐹

• Output margin is easier to
maximize – SVM problem

• Maximized by many cost 
functions, e.g., hinge loss.

𝑋𝑖

Φ(𝑋𝑖)
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GE AND WEIGHT DECAY

• Theorem 7:    𝛾𝑖𝑛 𝑋𝑖 ≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

sup
𝑉∈Υ

𝑋

𝑋 2
𝐽 𝑋

2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
𝐹

• Bounding the weights 
increases the input margin

• Weight decay regularization
decreases the GE

• Related to regularization used 
by [Haeffele & Vidal, 2015]

𝑉𝑖

Φ(𝑉𝑖)
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JACOBIAN BASED REGULARIZATION

• Theorem 7:    𝛾𝑖𝑛 𝑋𝑖 ≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

sup
𝑉∈Υ

𝑋

𝑋 2
𝐽 𝑋

2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑋

𝑖

 1≤𝑖≤𝐾 𝑊𝑖
𝐹

• 𝐽 𝑋 is the Jacobian of the 
DNN at point 𝑋.

• 𝐽 ∙ is piecewise constant.

• Using the Jacobian of the
DNN leads to a better bound.

• New regularization technique.
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RESULTS

• Better performance with less training samples

• CCE: the categorical cross entropy.

• WD: weight decay regularization.

• LM: Jacobian based regularization for large margin.

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory.

MNIST 
Dataset

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INVARIANCE

• Our theory extends also to study of the relation 
between invariance in the data and invariance in 
the network

• Invariance may improve generalization by a factor 

of 𝑇, where T is the number of transformations

• We have proposed also a new strategy to enforce 
invariance in the network [Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INVARIANCE SLICE

• Use transformations 𝑻𝟏, … , 𝑻𝑵 to transform the 
input [Dieleman et al., 2016]

• Average the features before the soft-max layer

𝑿

𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍+

𝒃𝟏 𝒃𝒊 𝒃𝑲

𝝓 𝒚

𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍+

𝒃𝟏 𝒃𝒊 𝒃𝑲

𝑻𝟏

𝑻𝑵

⋮ Averaging/
Voting
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INVARIANCE BY REGULARIZATION

• Use transformations 𝑻𝟏, … , 𝑻𝑵 to transform the 
input [Sokolic et al., 2017]

• Force features to be similar

𝑿

𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍+

𝒃𝟏 𝒃𝒊 𝒃𝑲

𝝓 𝒚

𝑾𝟏 𝝍 𝑾𝒊 𝝍 𝑾𝑲 𝝍+

𝒃𝟏 𝒃𝒊 𝒃𝑲

𝑻𝟏

𝑻𝑵

⋮ Minimize
distance

𝝓 𝒚
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INVARIANCE

• Designing invariant DNN reduce the GE

[Sokolić, Giryes, Sapiro & Rodrigues, 2017]
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Adversarial 
Examples

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Robustness of 
neural 

networks to 
Adversarial 

attacks
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ADVERSARIAL ATTACKS

 Deep neural networks can easily be fooled by small 
perturbations in the input, commonly referred to as 
Adversarial Attacks.

 The problem of “no common sense” – a network can perform 
its task well (e.g. image classification), but can easily be fooled 
in a way a human cannot.

 Adversarial Attacks are deliberate input perturbations –
random noise is not as likely to fool the network.
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ADVERSARIAL EXAMPLES

*These examples were generated using the DeepFool attack on ResNet-34, ImageNet classification.
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ADVERSARIAL ATTACKS

 Adversarial examples are highly transferable – an attack that 
successfully fooled one network is very likely to fool another 
network as well.

 Very little knowledge of the network’s architecture is necessary 
to attack it, i.e. grey-box attacks are very efficient as well.

 Several explanations to this phenomenon have been suggested:

• Adversarial examples finely tile the space like the rational 
numbers amongst the reals, they are common but occur only 
at very precise locations (“pockets”).

• Positively curved decision boundaries are more susceptible 
to universal adversarial perturbations.
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DEFENSE AND ATTACK METHODS

 Several attack and defense methods have been proposed to 
counter this problem.

 Defense methods aim at either increasing the robustness to 
attacks, or detecting that an attack has been performed.

 Attack methods:

• FGSM (Fast Gradient Sign Method)

• JSMA (Jacobian-based Saliency Map Approach)

• DeepFool

• Carlini & Wagner
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DEFENSE AND ATTACK METHODS

 Defense methods:

• Adversarial training

• Network Distillation

• Input Gradient regularization

• Cross-Lipschitz regularization

• Jacobian regularization
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JACOBIAN REGULARIZATION

 We proposed a novel approach to enhance a network’s 
robustness to adversarial attacks – Jacobian regularization.

 A network’s Jacobian matrix for 𝑧(𝐿) - the output of the 
network’s last fully connected layer before softmax (i.e. the 
logits) is

where 𝐷 – input dimension, 𝐾 – output dimension:

𝐽 𝑥𝑖 ≜ 𝐽 𝐿 𝑥𝑖 =

𝜕𝑧1
𝐿
𝑥𝑖

𝜕𝑥 1
⋯

𝜕𝑧1
𝐿
𝑥𝑖

𝜕𝑥 𝐷

⋮ ⋱ ⋮

𝜕𝑧𝐾
𝐿
𝑥𝑖

𝜕𝑥 1
⋯

𝜕𝑧𝐾
𝐿
𝑥𝑖

𝜕𝑥 𝐷

∈ ℝ𝐾× 𝐷
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JACOBIAN REGULARIZATION

 We regularize the Frobenius norm of the network's 
Jacobian:

 We perform post-processing training, i.e. our 
regularization is applied to already-trained networks:

 Reducing the computational overhead (Jacobian 
computation requires an additional back-propagation 
step).

 Allowing the usage of pre-existing networks.

𝐽 𝑥𝑖 𝐹
2 =  

𝑑=1

𝐷

 

𝑘=1

𝐾
𝜕

𝜕𝑥𝑑
𝑧𝑘
𝐿
(𝑥𝑖)

2

=  

𝑘=1

𝐾

∇𝑥𝑧𝑘
𝐿
𝑥𝑖

2

2
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WHY DOES IT WORK?

 Adversarial examples are essentially cases in which similar 
network inputs result in very different network outputs. 
Regularizing the Jacobian constraints this behavior: smaller 
Jacobian Frobenius norm → smoother classification function.

 Let [𝑥, 𝑥𝑝𝑒𝑟𝑡] be the 𝐷-dimensional line in the input space 

connecting 𝑥 and 𝑥𝑝𝑒𝑟𝑡. According to the mean value theorem 

there exists some 𝑥′ ∈ [𝑥, 𝑥𝑝𝑒𝑟𝑡] such that:

𝑧 𝐿 𝑥𝑝𝑒𝑟𝑡 − 𝑧 𝐿 𝑥
2

2

‖𝑥𝑝𝑒𝑟𝑡 − 𝑥‖2
2 ≤  

𝑘=1

𝐾

∇𝑥𝑧𝑘
𝐿
𝑥′

2

2
= 𝐽 𝑥′ 𝐹

2
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WHY DOES IT WORK?

 Empirical motivation – the average Jacobian Frobenius norm of 
perturbed images is larger:

𝟏

𝑵
 

𝒊=𝟏

𝑵

‖  𝐉(𝐱𝒊𝒑𝒆𝒓𝒕) 𝑭

𝟏

𝑵
 

𝒊=𝟏

𝑵

‖ ‖𝐉(𝐱𝒊) 𝑭Defense method

0.18770.14No defense

0.1430.141Adversarial training

0.0550.0315Jacobian regularization

0.05450.0301Jacobian reg. & Adversarial training
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WHY DOES IT WORK?

 Generally, an attack method seeks for the closest decision boundary to 
be crossed to cause a misclassification, such that the perturbation of the 
input is minimal.

 The distance 𝑑∗ is the first order approximation of the distance between 
an input 𝑥 and an input classified to the closest decision boundary. The 
relation between 𝑑∗ and the network’s Jacobian matrix (𝑘∗ is the original 
class of input 𝑥, 𝑘 = 1,… , 𝐾 is the class index):

 Encouraging a smaller Frobenius norm of the network’s Jacobian means 
encouraging a larger minimal distance between the original input and a 
perturbed input that would cause a misclassification.

𝑑∗ ≥
1

2‖J 𝐿 𝑥 ‖𝐹
min
𝑘≠𝑘∗

𝑧𝑘∗
𝐿
𝑥 − 𝑧𝑘

𝐿
𝑥
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WHY DOES IT WORK?

 It has been shown that positively curved decision 
boundaries create an enhanced vulnerability to adversarial 
examples:

*Illustration taken from “Analysis of universal adversarial perturbations”, Moosavi-
Dezfooli et al.

 Jacobian regularization encourages the network’s learned 
decision boundaries to be less positively curved.
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WHY DOES IT WORK?

 The decision boundary separating the classes 𝑘1 and 𝑘2 is the hyper-

surface: 𝐹𝑘1,𝑘2 𝑥 = 𝑧𝑘1
𝐿
(𝑥) − 𝑧𝑘2

𝐿
(𝑥) = 0.

 Using the approximation 𝐻𝑘 𝑥 =
𝜕2𝑧𝑘

𝐿
𝑥

𝜕𝑥2
≈ 𝐽𝑘 𝑥 𝑇𝐽𝑘 𝑥 (outer 

product of gradients, 𝐽𝑘(𝑥) is the 𝑘𝑡ℎ row in the matrix 𝐽(𝑥)), we get 

that the curvature of the decision boundary 𝐹𝑘1,𝑘2 𝑥 = 𝑧𝑘1
𝐿
𝑥

− 𝑧𝑘2
𝐿
𝑥 = 0 at the input point 𝑥 can be upper bounded by:

 For this reason, Jacobian regularization promotes a less positive 
curvature of the decision boundaries in the environment of the input 
samples.

𝑥𝑇 𝐻𝑘1 −𝐻𝑘2 𝑥 ≤  

𝑘=1

𝐾

𝐽𝑘 𝑥 𝑥 2 ≤ 𝐽 𝑥 𝐹
2‖𝑥‖2

2
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EXPERIMENTAL RESULTS

 We examined the performance of our method under different attack methods, 
and compared them to 3 other prominent defense methods – Input Gradient 
regularization, Cross-Lipschitz regularization and adversarial training.

 Results under the DeepFool attack on CIFAR-10 (  𝜌𝑎𝑑𝑣 is the average proportion 
between the norm of the minimal perturbation necessary to fool the network 
and the norm of the corresponding original input):

 𝝆𝒂𝒅𝒗Test accuracyDefense method

1.21 x 10−288.79%No defense

1.23 x 10−288.88%Adversarial Training

1.43 x 10−288.56%Input Gradient regularization

2.17 x 10−288.49%Input Gradient reg. & Adversarial Training

2.08 x 10−288.91%Cross-Lipschitz regularization 

4.04 x 10−288.49%Cross-Lipschitz reg. & Adversarial Training

𝟑. 𝟒𝟐 𝐱 𝟏𝟎−𝟐89.16%Jacobian regularization

𝟔. 𝟎𝟑 𝐱 𝟏𝟎−𝟐88.49%Jacobian reg. & Adversarial Training 
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EXPERIMENTAL RESULTS - FGSM

 Results under FGSM attack on CIFAR-10 (test 
accuracy for a test set of adversarial examples, ϵ -
attack magnitude):

79.63

70.9

62.86

55.34
49.66

45.44
41.38

38.38
35.62 33.92

80.65

74.07

65.34

58.74

52.13
46.46

42.07
38.28

35.41 32.91

76.56

66.75

57.56
52.53

47.68
44.56

41.16
37.75 35.34 34.17

78.12

68.8

60.12

53.51
48.7

44.64
41.2

38.36
35.55 33.75

86.62
83.08

77.95
71.89

65.74
60.79

55.08
51.19

47.56
43.84

86.88 84.8
80.68

74.93
69.04

62.68
57.1

52.14
47.13

43.69
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 Results under JSMA attack on CIFAR-10 (test 
accuracy for a test set of adversarial examples, ϵ -
attack magnitude):
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Optimization 
by DNN

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Robustness of 
neural 

networks to 
Adversarial 

attacks
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INVERSE PROBLEMS

• We are given 𝑿 = 𝑨𝒁 + 𝑬

• Standard technique for recovery
𝐦𝐢𝐧
𝒁

𝑿− 𝑨𝒁 𝟐 𝐬. 𝐭. 𝒁 ∈ 𝜰

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑿 − 𝑨𝒁 𝟐
𝟐 + 𝝀𝒇(𝒁)

Unknown 
signal

noise 
Given set of 

measurements
linear 

operator

𝒁 resides in a low 
dimensional set 𝜰

𝒇 is a penalty 
function

Regularization 
parameter
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ℓ𝟏 MINIMIZATION CASE

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑿 − 𝑨𝒁 𝟐
𝟐 + 𝝀 𝒁 𝟏

• Can be solved by proximal gradient, e.g., iterative 
shrinkage and thresholding technique (ISTA) 

𝒁𝒕+𝟏 = 𝝍𝝀𝝁 𝒁𝒕 + 𝝁𝑨𝑻 𝑿 − 𝑨𝒁𝒕

Soft 
thresholding

operation
- 𝝀𝝁 𝝀𝝁

𝝁 is the 
step size
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ISTA CONVERGENCE

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations

𝑬 𝒁 −  𝒁𝒕

𝒕 75UAI Tutorial



𝑳𝑰𝑺𝑻𝑨

• ISTA

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝒁𝒕 + 𝜇𝑨𝑻 𝑿 − 𝑨𝒁𝒕

• Rewriting ISTA:

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝑰 − 𝝁𝑨𝑻𝑨 𝒁𝒕 + 𝜇𝑨𝑻𝑿

• Learned ISTA (LISTA): 
𝒁𝒕+𝟏 = 𝝍𝜆 𝑾𝒁𝒕 + 𝑺𝑿

Learned 
operators
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• Replacing 𝐼 − 𝜇𝐴𝑇𝐴 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑊 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

LISTA CONVERGENCE

100

20

𝐸 𝑍 −  𝑍𝑡

𝒕
5020
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LISTA AS A NEURAL NETWORK

𝑾 𝝍

𝑺

𝒁 ∈ 𝜰

𝑿 ∈ ℝ𝒅

𝑿 = 𝑨𝒁 + 𝑬

 𝒁

An estimate 
of 𝒁

+

Learned 
linear 

operators

[Gregor & LeCun, 2010]

Soft 
thresholding

operation
- 𝝀 𝝀
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ISTA

𝝁𝑨𝑻

Soft 
thresholding

operation

𝑿 ∈ ℝ𝒅

𝑿 = 𝑨𝒁 + 𝑬

 𝒁+

Step size 𝜇 obeys
1
𝜇
≥ 𝐴

Iterative soft 
thresholding 

algorithm (ISTA)

- 𝝀𝝁 Minimizer of 

𝒎𝒊𝒏
 𝒁

𝑿 − 𝑨 𝒁 + 𝝀  𝒁
𝟏

𝝀𝝁

𝜇 is the 
step size

[Daubechies, Defrise & Mol, 2004], 
[Beck & Teboulle, 2009]

𝑰 − 𝝁𝑨𝑻𝑨

𝝍
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PROJECTED GRADIENT DESCENT (PGD)

𝝍 projects onto 
the set 𝜰

𝒇( 𝒁) ≤ 𝑹

𝑿 ∈ ℝ𝒅

𝑿 = 𝑨𝒁 + 𝑬

𝝁𝑨𝑻 𝝍  𝒁+

𝒇(𝒁) ≤ 𝑹

𝜇 is the 
step size

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑿 − 𝑨 𝒁

𝒔. 𝒕. 𝒇( 𝒁) ≤ 𝑹

𝑰 − 𝝁𝑨𝑻𝑨

80UAI Tutorial



THEORY FOR PGD

• Theorem 8: Let 𝑍 ∈ ℝ𝑑, 𝑓:ℝ𝑑 → ℝ a proper 
function, 𝑓 𝑍 ≤ 𝑅, 𝐶𝑓(𝑍) the tangent cone of 𝑓
at point 𝑍, 𝐴 ∈ ℝ𝑚×𝑑 a random Gaussian matrix 
and 𝑋 = 𝐴𝑍 + 𝐸. Then the estimate of PGD at 
iteration 𝑡,  𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜅𝑓𝜌
𝑡
𝑍 ,

where 𝜌 = sup
𝑈,𝑉∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈𝑇 𝐼 − 𝜇𝐴𝑇𝐴 𝑉

and  𝜅𝑓 = 1 if 𝑓 is convex and 𝜅𝑓 = 2 otherwise.
[Oymak, Recht & Soltanolkotabi, 2016].
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PGD CONVERGENCE RATE

• 𝜌 = sup
𝑈,𝑉∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈𝑇 𝐼 − 𝜇𝐴𝑇𝐴 𝑉 is the convergence 

rate of PGD.

• Let 𝜔 be the Gaussian mean width of 𝐶𝑓 𝑍 ∩ ℬ𝑑. 

• If 𝜇 =
1

𝑚+ 𝑑
2 ≃

1

𝑑
then 𝜌 = 1 − 𝑂

𝑚−𝜔

𝑚+𝑑
.

• If 𝜇 =
1

𝑚
then 𝜌 = 𝑂

𝜔

𝑚
. 

• For the 𝑘-sparse model 𝜔2 = 𝑂 𝑘log d

• For GMM with 𝑘 Gaussians  𝜔2 = 𝑂 𝑘 .

• How may we cause 𝜔 to become smaller for having a 
better convergence rate?
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INACCURATE PROJECTION

• PGD iterations projects onto Υ =  𝑍: 𝑓  𝑍 ≤ 𝑅 .

• Smaller Υ ⇒ Smaller 𝜔.

Faster convergence as

𝜌 = 1 − 𝑂
𝑚−𝜔

𝑚+𝑑
or 𝑂

𝜔

𝑚

• Let us assume that our signal belongs to a smaller set 
 Υ =  𝑍:  𝑓  𝑍 ≤ 𝑅 with  𝜔 ≪ 𝜔. 

• Ideally, we would like to project 
onto  Υ instead of Υ.

• This will lead to faster convergence.

• What if such a projection is not feasible?

⇒ 𝒇( 𝒁) ≤ 𝑹

 𝒇( 𝒁) ≤ 𝑹

𝜰

 𝜰
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INACCURATE PROJECTION

• We will estimate the projection onto  Υ by

• A linear projection 𝑃

• Followed by a projection onto Υ

• Assumptions:

• ℘Υ(𝑃𝑍)−𝑍 ≤ ϵ

Projection of the target vector 𝑍
onto P and then onto Υ

 𝒇( 𝒁) ≤ 𝑹
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INACCURATE PGD (IPGD)

𝝍 projects onto 
the set Υ

𝒇(𝒁) ≤ 𝑹

𝑿 ∈ ℝ𝒅

𝑿 = 𝑨𝒁 + 𝑬

𝝁𝑷𝑨𝑻 𝝍

𝑷 𝑰 − 𝝁𝑨𝑻𝑨

 𝒁+

 𝜰

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑿 − 𝑨 𝒁

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

 𝒇(𝒁) ≤ 𝑹
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THEORY FOR IPGD

• Theorem 9: Let 𝑍 ∈ ℝ𝑑, 𝑓:ℝ𝑑 → ℝ a proper convex* 
function, 𝑓 𝑍 ≤ 𝑅,  𝐶𝑓(𝑍) the tangent cone of 𝑓 at 
point 𝑍, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix and 𝑋
= 𝐴𝑍 + 𝐸. Then the estimate of IPGD at iteration 𝑡, 
 𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
 𝜖 𝑍 ,

where 𝜌𝑝 = sup
𝑈,𝑉∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈𝑇𝑃 𝐼 − 𝜇𝐴𝑇𝐴 𝑃𝑉

and   𝜖 = (2 + 𝜌𝑝)ϵ.
[Giryes, Eldar, Bronstein & Sapiro, 2016]
*We have a version of this theorem also when 𝑓 is non-proper or non-convex function 86UAI Tutorial



CONVERGENCE RATE COMPARISON

• PGD convergence:

𝜌 𝑡

• IPGD convergence:

𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
(2 + 𝜌𝑝)𝜖

 ≃
(𝑎)

𝜌𝑃
𝑡 + 𝜖  ≃

(𝑏)

𝜌𝑃
𝑡  ≪
(𝑐)

𝜌 𝑡

(a)𝜖 is negligible compared to 𝜌𝑃
(b) For small values of 𝑡 (early iterations).

(c) Faster convergence as 𝜌𝑃 ≪ 𝜌 (because 𝜔𝑝 ≪ 𝜔).
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MODEL BASED COMPRESSED SENSING

•  Υ is the set of sparse vectors with sparsity patterns 
that obey a tree structure.

• Projecting onto  Υ improves convergence 
rate compared to projecting onto the set 
of sparse vectors Υ [Baraniuk et al., 2010].

• The projection onto  Υ is more 
demanding than onto Υ.

• Note that the probability of selecting atoms from 
lower tree levels is smaller than upper ones.

• 𝑃 will be a projection onto certain tree levels – zeroing 
the values at lower levels.

1

0.5 0.5

0.25 0.25 0.25 0.25
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MODEL BASED COMPRESSED SENSING

Non-zeros picked 
entries has zero mean 
random Gaussian 
distribution with 
variance:
- 1 at first two levels
- 0.52 at the third level
- 0.22 at the rest of 
the  levels𝑍

−
 𝑍
𝑡
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 2-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 20.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 2 of each active 
atom to be ~𝑁(0,0.012) , respectively

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 3 only the largest value.
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SPECTRAL COMPRESSED SENSING
𝑍
−
 𝑍
𝑡
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 4-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 5.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 1 and 2 of each 
active atom to be ~𝑁(0,0.052)

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING
𝑍
−
 𝑍
𝑡
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LEARNING THE PROJECTION

• If we have no explicit information about  Υ it might 
be desirable to learn the projection. 

• Instead of learning 𝑃, it is possible to replace 

𝑃 𝐼 − 𝜇𝐴𝑇𝐴 and 𝜇𝑃𝐴𝑇 with two learned matrices 

𝑆 and 𝑊 respectively.

• This leads to a very similar scheme to the one of 
LISTA and provides a theoretical foundation for the 
success of LISTA.
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LEARNED IPGD

𝝍 projects onto 
the set 𝜰

𝒇(𝒁) ≤ 𝑹

𝑿 ∈ ℝ𝒅 𝑾 𝝍  𝒁+

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑿 − 𝑨 𝒁

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

Learned 
linear  

operators

𝑿 = 𝑨𝒁 + 𝑬
 𝜰

 𝒇(𝒁) ≤ 𝑹

𝑺
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SUPER RESOLUTION

• A popular super-resolution technique uses a pair of 
low-res and high-res dictionaries [Zeyde et al. 2012]

• The original work uses OMP with sparsity 3 to decode 
the representation of patches in low-res image

• Then the representation is used to reconstruct the 
patches of the high-res image

• We replace OMP with LIPGD with 3 levels but higher 
target sparsity

• This leads to better reconstruction results (with up to 
0.5dB improvement)
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LISTA

𝜓 is a proximal 
mapping.

𝝍 𝑼 =

𝐚𝐫𝐠𝐦𝐢𝐧
 𝒁∈ℝ𝒅

𝑼 −  𝒁

+𝝀𝒇( 𝒁)

𝑿 ∈ ℝ𝒅

𝑿 = 𝑨𝒁 + 𝑬

𝑾 𝝍

𝑺

 𝒁+

 𝜰

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑿 − 𝑨 𝒁

+𝝀 𝒇( 𝒁)

 𝒇(𝒁) ≤ 𝑹

Learned 
linear  

operators
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LISTA MIXTURE MODEL

• Approximation of the projection onto  Υ
with one linear projection may not 
be accurate enough.

• This requires more LISTA layers/iterations.

• Instead, one may use several LISTA networks, 
where each approximates a different part of  Υ

• Training multiple LISTA networks
accelerate the convergence further.

 Υ

 Υ
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LISTA MIXTURE MODEL
𝑋
−
𝐴
 𝑍
𝑡
22
+

 𝑍
𝑡
1
−

𝑋
−
𝐴
𝑍

22
−

𝑍
1
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RELATED WORKS

• In [Bruna et al. 2017] it is shown that a learning may 
give a gain due to better preconditioning of A.

• In [Xin et al. 2016] a relation to the restricted isometry 
property (RIP) is drawn

• In [Borgerding & Schniter, 2016] a connection is drawn 
to approximate message passing (AMP).

• In [Chen et al., 2018] and [Liu et al., 2019] tied and 
analytical weights are studied showing exponential 
convergence under some conditions.

• All these works consider only the sparsity case
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Take Home 
Message

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Robustness of 
neural 

networks to 
Adversarial 

attacks
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